
User Commands
User Guide

User Commands version 2.3

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2018 by Dyalog Limited
All rights reserved.

User Commands User Guide

User Commands version 2.3
Document Revision: 20181005_230

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties ofmerchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark ofMicrosoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 Cache File 3

2.1.1 Defining the UCMDCACHEFILE Environment Variable 4
3 Using User Commands 6

3.1 Installation 6
3.2 Directory Structure 6
3.3 Implementation 6

3.3.1 Customising the Implementation 7
3.4 File Format 8
3.5 Groups 8
3.6 Syntax in Dyalog Sessions 9

3.6.1 Requesting Additional Information 9
3.7 Running User Commands 10

3.7.1 Arguments 10
3.7.2 Modifiers and Modifier Values 10

4 Creating User Commands 12
4.1 Basic Definition 12
4.2 The List Function 13

4.2.1 Name 13
4.2.2 Group 14
4.2.3 Parse 14

4.3 The Run Function 15
4.4 The Help Function 15

4.4.1 Defining Multiple Levels of Help 16
4.5 Modifiers 18

4.5.1 Default Modifier Values 18
4.6 Arguments 20

4.6.1 Default Argument Values 20
4.6.2 Arguments Including Space Characters 20
4.6.3 Minimum Number of Arguments 20
4.6.4 Maximum Number of Arguments 21
4.6.5 Long Arguments 21
4.6.6 Summary of Argument Specification in the Parser 21

User Commands User Guide

revision20181005_230 i

4.7 Saving Custom User Commands 22
4.8 Detecting NewCustom User Commands 23

5 Predefined User Commands 24
5.1 ARRAY Group 25

5.1.1]Compare 25
5.1.2]Edit 26

5.2 CALC Group 26
5.2.1]Factors 26
5.2.2]FromHex 27
5.2.3]PivotTable 27
5.2.4]ToHex 28

5.3 DEVOPS Group 28
5.3.1]DBuild 28
5.3.2]DTest 28
5.3.3]Link 28

5.4 FILE Group 28
5.4.1]CD 29
5.4.2]Collect 29
5.4.3]Compare 29
5.4.4]Edit 30
5.4.5]Find 30
5.4.6]Open 30
5.4.7]Replace 31
5.4.8]Split 31
5.4.9]ToLarge 31
5.4.10]ToQuadTS 32
5.4.11]Touch 32

5.5 FN Group 32
5.5.1]Align 32
5.5.2]Calls 33
5.5.3]Compare 33
5.5.4]Defs 34
5.5.5]DInput 34
5.5.6]Latest 35
5.5.7]ReorderLocals 35

5.6 MSWIN Group 36
5.6.1]Assemblies 36
5.6.2]Caption 36
5.6.3]CopyReg 37
5.6.4]FileAssociations 38

User Commands User Guide

revision20181005_230 ii

5.6.5]GUIProps 39
5.6.6]KeyPress 39

5.7 NS Group 40
5.7.1]ScriptUpdate 41
5.7.2]Summary 41
5.7.3]Xref 42

5.8 OUTPUT Group 43
5.8.1]Box 43
5.8.2]Boxing 43
5.8.3]Disp 44
5.8.4]Display 44
5.8.5]Find 45
5.8.6]Format 45
5.8.7]Layout 46
5.8.8]Rows 47

5.9 PERFORMANCE Group 47
5.9.1]Profile 47
5.9.2]RunTime 48
5.9.3]SpaceNeeded 49

5.10 SALT Group 49
5.10.1]Clean 50
5.10.2]Compare 50
5.10.3]List 50
5.10.4]Load 51
5.10.5]Refresh 51
5.10.6]RemoveVersions 52
5.10.7]Save 52
5.10.8]Set 52
5.10.9]Settings 53
5.10.10]Snap 54

5.11 TOOLS Group 54
5.11.1]ADoc 54
5.11.2]Calendar 55
5.11.3]Chart 55
5.11.4]Demo 56
5.11.5]Help 56
5.11.6]Version 56

5.12 TRANSFER Group 57
5.12.1]In 57
5.12.2]Out 57

5.13 UCMD Group 57

User Commands User Guide

revision20181005_230 iii

5.13.1]UDebug 57
5.13.2]ULoad 57
5.13.3]UMonitor 58
5.13.4]UNew 59
5.13.5]UReset 59
5.13.6]USetup 60
5.13.7]UVersion 60

5.14 WS Group 61
5.14.1]Check 61
5.14.2]Compare 61
5.14.3]Document 61
5.14.4]FindRefs 62
5.14.5]FnsLike 64
5.14.6]Locate 64
5.14.7]Map 64
5.14.8]NamesLike 65
5.14.9]Nms 65
5.14.10]ObsLike 66
5.14.11]Peek 66
5.14.12]SizeOf 67
5.14.13]VarsLike 67

A SAMPLES Group 68
A.1]UCMDHelp 68
A.2]UCMDNoParsing 68
A.3]UCMDParsing 69

B Example User Commands 70
B.1 Example: Basic User Command Definition 70
B.2 Example: Cross-Operating System Definition 71
B.3 Example: Optional Arguments 74
B.4 Example: The Parse Variable 77
B.5 Example: Debugging a User Command 79

Index 83

User Commands User Guide

revision20181005_230 iv

1 About This Document

This document is intended as an introduction to user commands, a guide to creating and
implementing new user commands and a summary of the predefined user commands
supplied with Dyalog.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge, see
http://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that ⎕IO
and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type ofmaterial that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision20181005_230 1

User Commands User Guide

http://www.dyalog.com/introduction.htm

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that are
available. A full list of the platforms on which Dyalog version 17.0 is supported is available
at www.dyalog.com/dyalog/current-platforms.htm. Within this document, differences in
behaviour between operating systems are identified with the following icons
(representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision20181005_230 2

User Commands User Guide

http://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

User commands are tools that are available at any time, in any workspace, as extensions
to the Dyalog development environment. The text-based implementation of user
commands allows development tools to be easily shared between users, and the ability
to create custom user commands in addition to the predefined user commands that are
supplied with Dyalog means that it is simple to write utility tools for your environment
that can be easily issued to an entire development team.

User commands are entered in an APL Session by starting an input line with a] character,
for example:

]ToHex 250+⍳5
FB FC FD FE FF

A section of the APLWiki is devoted to sharing custom user commands (see
https://aplwiki.com/CategoryDyalogUserCommands).

2.1 Cache File
The first time that you start a Dyalog Session after installing/updating Dyalog, a cache file
is created comprising the name of each of the user commands and the file in which it is
defined. This can take a few seconds. If any of the files that contain user commands are
altered or a new file containing user commands is created, then the cache file is rebuilt:

l the next time a Dyalog Session is started.
l when the]UReset user command is run (forces an in-Session recache).
l if a user attempts to run (or get help about) a user command that is not in the

cache.

The cache file is also rebuilt if a user command is called after updating the cmddir global
parameter (using the]Settings user command – see Section 5.10.9).

By default, the cache file is located in:
Documents\Dyalog APL <version> Files\UserCommand20.cache

revision20181005_230 3

User Commands User Guide

https://aplwiki.com/CategoryDyalogUserCommands

By default, the cache file is located in:
$HOME/.dyalog/UserCommand20.cache

By default, the cache file is located in:
Users/<name>/.dyalog/UserCommand20.cache

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

2.1.1 Defining the UCMDCACHEFILE Environment Variable

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

Defining an environment variable is operating system-specific.

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(permanent method)

1. Open the Control Panel and double-click on the System icon.
The Systemwindow is displayed.

2. In the Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.

3. Navigate to the Advanced tab of the System Properties window.
4. Click Environment Variables....

The Environment Variables dialog box is displayed.
5. In theUser variables for <user> pane, click New....

TheNew User Variable dialog box is displayed.
6. In the Variable name field, enter UCMDCACHEFILE.
7. In the Variable value field, enter <full path>\<cache file name> of the user

commands cache file.
8. Click OK to create the new environment variable and exit theNew User Variable

dialog box.
9. Click OK to exit the Environment Variables dialog box.
10. Click OK to exit the System Properties window.
11. Close the Systemwindow.

revision20181005_230 4

User Commands User Guide

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(temporary method – for session duration only)

1. Open the cmd.exe application.
2. At the command prompt, enter:

dyalog.exe UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>\<cache file name> of the user
commands cache file.

To define the UCMDCACHEFILE environment variable on UNIX (temporary method –
for session duration only)

1. Open a shell.
2. At the command prompt, enter:

UCMDCACHEFILE=[UCMDCACHEFILE] dyalog

where [UCMDCACHEFILE] is the new <full path>\<cache file name> of the user
commands cache file.

To define the UCMDCACHEFILE environment variable on macOS (temporary method –
for session duration only)

1. Open the $HOME/.dyalog/dyalog.config file in your preferred text editor.
2. Add the following:

UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>\<cache file name> of the user
commands cache file.

revision20181005_230 5

User Commands User Guide

3 Using User Commands

This chapter introduces some of the concepts that underpin user commands in Dyalog.

3.1 Installation
A set of predefined user commands is installed automatically with Dyalog.

Updates to the set of predefined user commands can be downloaded from
https://www.dyalog.com/tools/user-commands.htm.

3.2 Directory Structure
The [DYALOG]\SALT\spice directory contains the predefined user commands that are
installed with Dyalog.

The spice directory can only bemoved to a different location by moving its parent SALT
directory and setting the SALT environment variable accordingly. For information on
moving the SALT directory and setting the environment variable, see the SALT User Guide.

Although the spice directory can bemoved, it must always remain directly beneath
the SALT directory and must not be renamed.

3.3 Implementation
When an input line in a Session starts with a] character, Dyalog looks for the function
⎕SE.UCMD:

l if this function exists, then it is called with the rest of the input line as the right
argument and a reference to calling space as the left argument.

l if this function does not exist, then user commands are disabled.

revision20181005_230 6

User Commands User Guide

https://www.dyalog.com/tools/user-commands.htm

This implementation means that application code can invoke user commands by calling
⎕SE.UCMD directly.

Dyalog Ltd reserves the right to change the implementation of the user command
framework.

EXAMPLE

The following command is entered while in a namespace:
]<ucmd> –myModifier=value

Dyalog's interpreter preserves this exactly and makes the following call:
⎕THIS ⎕SE.UCMD '<ucmd> –myModifier=value'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the -myModifiermodifier applied with a value of
value and the result is displayed in the Session.

EXAMPLE

The result of <ucmd> is assigned to a variable called <variable>:
]<variable>←<ucmd> –myModifier=value

Dyalog's interpreter preserves this exactly and makes the following call:
⎕THIS ⎕SE.UCMD '<variable>←<ucmd> –myModifier=value'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the -myModifiermodifier applied with a value of
value and the result is assigned to <variable>.

If <variable>was not included then the result of <ucmd>would be discarded.

3.3.1 Customising the Implementation

Although it is possible to implement a custom user command system by redefining
⎕SE.UCMD, Dyalog Ltd does not recommend this approach – adhering to the user
command framework supplied with Dyalog promotes a single, consistent, format that
enables all custom user commands to be shared between Dyalog Sessions.

revision20181005_230 7

User Commands User Guide

3.4 File Format
Each user command comprises a script containing a single namespace object (for more
information on scripted files, including declaration statements and permitted constructs,
see theDyalog Programming Reference Guide) and must be stored as files with the
.dyalog extension.

If an extension is not specified when using user commands to save a script file,
then .dyalog is automatically appended.

By default, double-clicking on a .dyalog file opens that file using the standalone
editor.

Files with the .dyalog extension are Unicode text files. This means that they can store any
text that uses Unicode characters. This format includes most of the world's languages and
the Dyalog character set, and is supported by many software applications. By using text
files as a storagemechanism, user commands and other tools written using Dyalog can be
combined with industry-standard tools for source codemanagement.

3.5 Groups
User commands with common features can be grouped together under a single name.
These groups have no effect on the functionality of the individual user commands but
enable related user commands to be gathered together for ease of reference and provide
a means of sorting and classifying user commands that can be very useful as the number
of user commands increases.

User command names must be unique within a group but do not have to be unique
across all groups. This means that groups allow a systematic naming convention for user
commands that perform similar functions on different types of APL object, for example,
the predefined user command]FILE.Compare compares two files,]ARRAY.Compare
compares two arrays and]FN.Compare compares two functions.

Although a user command can have the same name as its group (or another
group), Dyalog Ltd does not recommend this as it can introduce ambiguity to a
user reading the code.

When running (or asking for help on) a user command, the group name can be prefixed to
the user command name, separated by a . character; this group name prefix is
mandatory if the user command name is not unique across all groups.

revision20181005_230 8

User Commands User Guide

Every user command must be in a group, and every group must comprise at least one
user command.

3.6 Syntax in Dyalog Sessions
User commands are entered in a Dyalog Session with a preceding right bracket. The basic
syntax is as follows:

l to run a user command:]<ucmd>...
l to display general help information:]
l to list all user commands in their groups (without descriptions):]?
l to list all user commands in their groups (with descriptions):]??
l to list all the available commands in a specific group:]<groupname> -?

l to display brief information for a user command:]<ucmd> -?

l to display detailed information for a user command:]<ucmd> -??

l to display additional information for a user command:]<ucmd> -???

l to list all the available commands defined in .dyalog files in a specific directory:
]<full path to directory>/<directory name> -?

l to list all user commands or groups that match pattern X*YZ*(* is a wildcard):
]X*YZ* -?

l to assign the result of a command to a variable:]<var>←<ucmd>...
l to discard the result of a command:]←<ucmd>...

The names of user commands and groups are not case-sensitive although their
arguments, modifiers and modifier values might be. The convention used in this
document is that group names are shown in uppercase and user command names
are shown in upper CamelCase.

3.6.1 Requesting Additional Information

Help can be requested in a Dyalog Session using the following syntax:
l for general help on user commands:]
l for help on a specific user command:]<ucmd> -? or]Help]<ucmd>

l for more detailed help on a specific user command:]<ucmd> -??

For a specific user command, the information that is returned is dependent on the level of
help requested. This level is defined to be 1 less than the number of ? characters entered
after the - character; for example,]<ucmd> -?? returns the information defined for

revision20181005_230 9

User Commands User Guide

level 1 of the <ucmd> user command. The number of levels of help available depends on a
user command's definition (for information on defining multiple levels of help in custom
user commands, see Section 4.4.1).

3.7 Running User Commands
User commands are run with the following syntax:

]<ucmd> <-modifiers/arguments>

For information on the precise syntax for each user command, the arguments that can be
supplied to it and themodifiers that it can take, enter]<ucmd> -? or]Help]<ucmd>
in a Dyalog Session.

When running a user command, the name of that command must be entered in full.

Dyalog's auto-complete functionality means that any user commands that match
the entered string are presented as selectable options, making it easy to correctly
specify the requisite user command. (Auto-completion is not available in the TTY
version of Dyalog.)

The names of user commands are not case-sensitive although their arguments,
modifiers and modifier values might be.

3.7.1 Arguments

Some user commands can accept (or require) one or more arguments. To see a list of the
possible arguments for a user command, enter]<ucmd> -? or]Help]<ucmd> in a
Dyalog Session.

For example, the behaviour of the user command]CD depends on the argument
supplied when calling it. If it is run with no argument, then it returns the current working
directory – this is equivalent to entering cd on the command line of a Microsoft Windows
operating system or pwd in UNIX. However, if a single argument specifying the full path to
a directory is supplied, then the user command changes the current working directory to
be the one specified by the argument.

3.7.2 Modifiers and Modifier Values

The default behaviour of a user command can be altered through the application of
modifiers (instructions that the command should change its default behaviour).

revision20181005_230 10

User Commands User Guide

Modifiers must be prefixed with the – character and are separated from any associated
modifier values with the = character, for example, -version=3 or -format=APL. A
modifier that does not accept a modifier value but can only be present or absent is
sometimes referred to as a flag or a switch, for example, -protect.

When running a user command with a specified modifier, the name of themodifier does
not always need to be entered in full as long as enough of themodifier's name is entered
for it to be interpreted unambiguously. For example, if a user command has a modifier
called -version and does not have any other modifiers starting with the letter v then
the function can be successfully called with modifiers -version, -vers, -v, and so on.

Multiple modifiers can be included in a user command call – in this situation they must be
separated by a space character. The order in which they are specified is irrelevant.

revision20181005_230 11

User Commands User Guide

4 Creating User Commands

When an instruction is called repeatedly it can improve efficiency to have that instruction
in a script file. The user command framework provides a very efficient mechanism for
doing this, allowing a user to create and update instructions without the necessity of
maintaining a workspace. Unlike a workspace, user commands do not need to be loaded
into each Session. In addition, their text-based implementation makes them easy to store
in a repository and share between users.

This chapter describes the syntax, rules and conventions governing the creation of
custom user commands.

4.1 Basic Definition
A new user command can be defined in one of the following ways:

l in a text file (for example, using Microsoft Notepad) and then saved as a .dyalog file
l in a Dyalog Session and saved as a .dyalog file using the]Save user command.
l in a Dyalog Session using the]UNew user command.

Once in the appropriate directory (see Section 4.7), the new user command can be run
from the Dyalog Session.

The script for Dyalog's predefined user commands can be a useful starting point
when creating a new user command. The location of an existing user command's
script can be found in the following ways:

l]UVersion <ucmd> returns the script location for the specified user
command

l]ULoad <ucmd> loads the script for the specified user command into the
active workspace and returns the script location.

l]<ucmd> -? returns the script location for the specified user command if
]UDebug is on.

revision20181005_230 12

User Commands User Guide

User commands are defined by three specific APL functions (along with any additional
functions needed for the particular purpose of the user command). The three functions
must be called:

l List – for information on the List function, see Section 4.2.
l Run – for information on the Run function, see Section 4.3.
l Help – for information on the Help function, see Section 4.4.

These functions are wrapped together in a namespace (the order in which the functions
are specified within the namespace is not important). A single namespace can host
multiple user commands, but must only have one instance of each of the three functions
irrespective of howmany user commands it contains. (Although a class can be used
instead of a namespace, a namespace is the recommended approach.)

See Appendix A for some sample user commands that demonstrate the use of
multiple levels of help and parsing user command lines. See Appendix B for some
examples of user commands wrapped in a namespace – these show how the List,
Help and Run functions are defined.

4.2 The List Function
The List function informs the user command framework about the command being
defined, enabling it to display a summary of the command when requested to list all
available commands (] -?), optionally with descriptions (] -??) .

The List function is niladic and returns one namespace for each user command defined
within it. Each namespace contains four variables:

l Desc – a summary of the user command's functionality
l Name – the name of the user command (see Section 4.2.1)
l Group – the name of the group to which the command belongs (see Section 4.2.2)
l Parse – parsing information for the framework (see Section 4.2.3)

4.2.1 Name

User commands must have unique names within a group (names can be replicated across
different groups if required). They must be valid APL identifier names (for more
information on legal names, see theDyalog Programming Reference Guide).

Modifiers must have unique names within the user command but do not have to be
unique within the superset of user commands. Modifier names are case-sensitive.

The names of user commands and modifiers cannot contain space characters.

revision20181005_230 13

User Commands User Guide

When naming a modifier, avoid the names Arguments, Delim, Propagate, SwD
and Switch as these names are used by the parser.

4.2.2 Group

Every user command must be a member of a group (but can only be a member of one
group). In addition:

l the user commands for a single group do not all need to be defined within a single
namespace/.dyalog file

l a single namespace/.dyalog file can include user commands for several different
groups

l user command names must be unique within a group but do not have to be
unique across all groups (however, custom user commands should not be given
the same name as any of the predefined user commands within the SALT group).

Although it is possible to add a custom user command to one of the predefined
user command groups, Dyalog Ltd recommends that this is avoided as there could
be unforeseen consequences (especially with the SALT and UCMD groups).

4.2.3 Parse

If the Parse variable for a user command is empty, then the Run function's second
argument will comprise everything following the command name. By setting the Parse
variable to non-empty values, the user command framework is able to handle arguments
and modifiers. For more information on modifiers and modifier values, see Section 4.5.
For more information on arguments, see Section 4.6.

The following general rules apply when processing a call to a user command:
l user commands take 0 or more arguments and by 0 or moremodifiers
l individual arguments and modifiers are separated by space characters
l arguments and modifiers can be specified in any order
l arguments can be optional or mandatory
l modifiers are identified by a preceding - character
l modifier values are identified by a preceding = character
l modifier names are case-sensitive
l individual arguments and modifier values can be delimited by single or double

quotes to allow leading/trailing/internal space characters or to allow arguments
that have a leading - character.

revision20181005_230 14

User Commands User Guide

The user command framework verifies that these rules have been adhered to before
creating a new namespace. It then populates this namespace with a variable called
Arguments (containing all the arguments) and a variable for each of themodifiers with
names matching those of themodifiers. Other manipulation tools are also added to the
namespace, for example, the Switch function – see Section 4.5.1. This namespace is
passed to the Run function (see Section 4.3) as its second argument.

If the Parse variable defined in a user command's List function is empty, then the user
command will accept anything; the entire string is the argument.

If the Parse variable defined in a user command's List function is not empty, then it
must describe the number of arguments and themodifiers used. The number of
arguments is a simple number and the list ofmodifiers must include, for each modifier, its
name, whether it accepts a value and, optionally, any restrictions for that value.

4.3 The Run Function
The Run function executes the code for the command. It is always called monadically with
a two-element vector argument; the user command's name and the supplied
arguments/modifiers. As a single namespace can host multiple user commands, the Run
function uses the command name to determine the appropriate actions to perform.

4.4 The Help Function
The Help function reports detailed information on the user command when this is
requested (by entering]<ucmd> -? or]Help]<ucmd> in a Dyalog Session). As a single
namespace can host multiple user commands, the Help function uses the command
name to determine the appropriate information to return.

When a user requests help for a particular user command, the Help function returns a
specific set of information by default:
──
]<GROUPNAME>.<commandname>

<specific defined help information>

If]UDebug is on, then the Help function returns an enhanced set of information by
default:

──
]<GROUPNAME>.<commandname>

revision20181005_230 15

User Commands User Guide

Source: <location of the user command's script file>
Version: <version number of the user command>
Syntax: <number of arguments> only if arguments can be specified
Accepts modifiers <list of all modifiers> only if modifiers can be specified

<specific defined help information>

4.4.1 Defining Multiple Levels of Help

The specific defined help information that is presented to a user when requesting help in a
Dyalog Session is dependent on the level of help requested. This level is defined to be 1
less than the number of ? characters entered after the - character; for example,]<ucmd>
-?? returns the information defined for level 1 of the <ucmd> user command.

As with the predefined user commands, increasingly detailed levels of information can be
provided for custom user commands. If multiple levels of help are defined, then Dyalog
Ltd recommends including information to that effect in each level, for example, the
information that is displayed in response to a]<ucmd> -?? request should state that
more detailed information is available if]<ucmd> -??? is entered.

Any valid Dyalog algorithmic syntax can be used in the Help function to define different
levels of help, for example, control structures or branching. Optionally, the different levels
of help can be cumulative so that, for example,]<ucmd> -??? returns the help
information for levels 0 and 1 as well as the help for level 2.

The following code fragment is an example showing how separate (non-cumulative) levels
of help can be defined within the Help function:
∇ r←level Help Cmd

:Select level
:Case 0

r←⊂'This is basic help.'
:Case 1

r←⊂'This is level 1 help.'
:Case 2

r←⊂'This is level 2 help.'
:Else

r←⊂'This is level 3 help.'
:EndSelect

∇

In this case:
l]<ucmd> -? gives This is basic help.

l]<ucmd> -?? gives This is level 1 help.

l]<ucmd> -??? gives This is level 2 help.

revision20181005_230 16

User Commands User Guide

l]<ucmd> -???? gives This is level 3 help.

l]<ucmd> -????? gives This is level 3 help.

The :Else control structure in the code fragment ensures that requests for higher
levels of help than are defined return the highest-defined level rather than
generating an error message.

The following code fragment is an example showing how cumulative levels of help can be
defined within the Help function:
∇ r←level Help Cmd

r←⊂'This is basic help.'
r,←⊂'This is level 1 help.'
r,←⊂'This is level 2 help.'
r,←⊂'This is level 3 help.'
r←((1+level)⌊≢r)↑r

∇

In these cases:
l]<ucmd> -? gives
This is basic help.

l]<ucmd> -?? gives
This is basic help.
This is level 1 help.

l]<ucmd> -??? gives
This is basic help.
This is level 1 help.
This is level 2 help.

l]<ucmd> -???? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

l]<ucmd> -????? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

Entering]Help]<ucmd> in a Dyalog Session always presents the user with the
same level of help as]<ucmd> -? even if there aremultiple levels of help defined.

revision20181005_230 17

User Commands User Guide

4.5 Modifiers
Modifiers enable a user command to apply filters and rules so that an entirely new
(similar) user command does not need to be written. The user command framework
allows you to define themodifiers that your user command will accept. The rules when
defining each modifier in the Parse variable are:

l If a modifier accepts characters in a set, then the Parse variable includes the
modifier and possible values with the ∊ character as a separator. For example:
-<modifier name>∊<set of characters>

so -XYZ∊abc012means that themodifier -XYZ can accept any number and
combination of characters in the set abc012, such as ab2a0b.

l If a modifier accepts specific strings, then the Parse variable includes themodifier
and possible values with the = character as a separator and the strings separated
by space characters. For example:
-<modifier name>=<string1> <string2> <string3>

so -XYZ=abc 012means that themodifier -XYZ can accept either abc or 012 as
a modifier value.

l If a modifier accepts any string, then the Parse variable includes themodifier and
a = character with nothing after it. For example:
-<modifier name>=

so -XYZ=means that themodifier -XYZ can accept any value.

For each of these three rules, enclosing the separator character within square brackets
means that specification ofmodifier values is optional. For example,-XYZ[=]means that
themodifier -XYZ can be specified without a value but will accept any value.

4.5.1 Default Modifier Values

Amodifier always has an internal value. This is one of the following:
l 0 if themodifier is not included when running the user command
l 1 if themodifier is included when running the user command but no modifier value

is included
l a string matching the specified modifier value

Amodifier can be configured to default to a specific value in one of three ways; these
approaches are shown in this section with themodifier –X defaulting to a modifier value
of 123 (a three-element character vector).

revision20181005_230 18

User Commands User Guide

Approach 1: Assign a default value to themodifier using the ":" character as the
separator:

List[i].Parse←'-X:123'

With this approach, the default value is reported only if themodifier is not used; a value
of 1 is reported if themodifier is used but no value is specified.

Approach 2: Test whether themodifier value is 0 and, if it is, then set it to the required
default value.

For example:

:if X≡0 ⋄ X←'123' ⋄ :endif

Approach 3: Define the default value using the dyadic form of the Switch function
(automatically defined in the namespace that is passed to the Run function (see Section
4.3) as its second argument).

Given the name of a modifier as a right argument:
l monadic Switch returns:

o 0 if an invalid modifier name is specified
o 0 if themodifier is not specified and no default value has been set for that

modifier
o 1 if themodifier is specified without a modifier value
o a string matching the specified modifier value
o a string matching the default modifier value if a modifier is not specified but

a default value has been set for that modifier
l dyadic Switch returns:

o the value of the left argument (default value) if an invalid modifier value is
specified

o the value of the left argument (default value) if a modifier is not specified
and no default value has been set for that modifier

o the specified modifier value if defined – however, if the value of the default is
numeric then it assumes that the specified modifier value should also be
numeric and transforms it into a number. This means that, if themodifier
and modifier value –X=123 is entered, the expression 99 Args.Switch
'X'will return (,123) not '123'; the Switch function always returns a
vector, making it very easy to differentiate between 0 (themodifier is not
included when running the user command) and ,0 (a modifier value of 0
was specified when running the user command).

revision20181005_230 19

User Commands User Guide

4.6 Arguments
Unlikemodifiers, arguments do not have names. However, as arguments must be
specified in a particular order and each have a specific purpose, they should be given an
appropriate name in the Help function to make their purpose clear.

The number of arguments that a user command can take is specified in the Parse
variable (see Section 4.2.3 – this explains the rules for determining the value to specify
there).

4.6.1 Default Argument Values

A default value can be defined for an argument – this value is automatically used if the
argument is not specified when running the user command. Default values are defined
within the Run function.

EXAMPLE

To set a default value of 'defaultfor4th' for the 4th argument:
args←a.Arguments,(⍴a.Arguments)↓0 0 0 'defaultfor4th'

where a is the second argument supplied to the Run function, that is the
arguments/modifiers supplied to the user command (see Section 4.3). In this example,
the first three arguments have their default values set to 0 if they are optional arguments;
if they aremandatory then any value specified here is ignored.

4.6.2 Arguments Including Space Characters

Arguments that contain space characters must be delimited with ' or " characters. For
example, if the user command]NewIDmust have 2 arguments supplied, full name and
address, then Parse should be set to '2' and the user command is run as follows:

]NewID 'Morten Kromberg' 'Dyalog Ltd'

If the user command]NewID accepts 3 arguments, firstname, surname and address,
then Parse should be set to '3' and the user command is run as follows:

]NewID Morten Kromberg 'Dyalog Ltd'

4.6.3 Minimum Number of Arguments

If a user command must have a minimum number of arguments, then Parse can be
coded to that effect by assigning it a range of numbers of arguments, that is:
Parse←'<min number of args>-<max number of args>'

revision20181005_230 20

User Commands User Guide

Aminimum number of arguments cannot be specified without also specifying a maximum
number of arguments. However, if there is no maximum number of arguments then an
arbitrary high number can be used. For example, if at least three arguments must be
supplied when calling a user command but there is no limit to the number of arguments
that the user command can process, then Parse could be assigned as Parse←'3-
9999'.

4.6.4 Maximum Number of Arguments

If a user command can only process a limited number of arguments, then Parse can be
coded to that effect by appending S to themaximum number of arguments. For example,
if the user command can accept 0, 1 or 2 arguments but no more, then Parse should be
set to '2S'.

4.6.5 Long Arguments

The last argument can be defined to comprise anything that remains after removing the
other arguments. Parse can be coded to that effect by appending L to themaximum
number of arguments – any additional arguments after themaximum number is reached
aremerged into the last argument. For example, if the user command can accept 1
argument consisting of everything that is included when running the command, then
Parse should be set to '1L'.

The long argument L can be appended to themaximum number of arguments S (see Section
4.6.4) to specify that any additional arguments after themaximum number has been
supplied should bemerged into the last one supplied. For example, if '3SL' is specified,
then 0, 1, 2 or 3 arguments can be supplied when calling the user command but any more
than this will bemerged with the third argument. This means that:

]cmd a1 a2 a3 a4 a5 a6

runs the user command cmdwith three arguments: a1, a2 and 'a3 a4 a5 a6'.

4.6.6 Summary of Argument Specification in the Parser

Parse←'n'where n can be:
l n1 : exactly n1 arguments must be supplied
l n2-n3 : a minimum of n2 arguments and a maximum of n3 arguments can be

supplied
l n4S : a maximum of n4 arguments can be supplied (equivalent to 0-n4)
l n5L : n5 arguments must be supplied; if more than this are supplied then the first
n5-1 arguments are taken and the rest aremerged together into the final n5
argument

revision20181005_230 21

User Commands User Guide

l n6-n7L : a minimum of n6 arguments and a maximum of n7 arguments can be
supplied; if more than this are supplied then the first n7-1 arguments are taken
and the rest aremerged together into the final n7 argument

l n8SL : a maximum of n8 arguments can be supplied; if more than this are supplied
then the first n8-1 arguments are taken and the rest aremerged together into the
final n8 argument (equivalent to 0-n8L)

l n9-n10L : a minimum of n9 arguments and a maximum of n10 arguments can be
supplied; if more than this are supplied then the first n10-1 arguments are taken
and the rest aremerged together into the final n10 argument (equivalent to 0-
n10L)

4.7 Saving Custom User Commands
Custom user commands must be saved in a .dyalog file (if a custom user command has
been created in a namespace in a Dyalog Session, then it can be saved as a .dyalog file
using the]Save user command).

The predefined user commands are located in the [DYALOG]\SALT\spice directory.
Dyalog Ltd recommends that you save custom user commands in a different directory
that is not located beneath the SALT directory; this is because theremight be permissions
issues with accessing custom commands beneath this directory and there is always the
possibility that Dyalog Ltd might issue a user command with the same filename as your
custom user command at a future date.

The custom user command directory must be added to the user command search path to
enable the user commands within it to be detected. To do this, use the]Settings user
command (see Section 5.10.9) to set the cmddir global parameter to the full path and
name of the directory.

When adding a new directory to the list of directories searched by the user
command framework, you must precede its path with a , character.

If the cmddir global parameter includes multiple directories, then the user
command framework searches the directories in the order listed and retrieves the
first user command it finds with the specified name. To see the list of directories
(and the order in which they are searched), enter]Settings cmddir.

If the]UNew user command is used to create and save a new user command, then its
location is automatically added to the list of directories searched.

revision20181005_230 22

User Commands User Guide

4.8 Detecting New Custom User Commands
If the newcmd global parameter is set to auto and a user command is entered in a Dyalog
Session that the user command framework does not recognise, then the Dyalog
interpreter scans the user command directory(s) to see whether new user commands
have been added. However, if the newcmd global parameter is set tomanual or a change
is made to the Help function or List function of an existing user command, then the
user command]UResetmust be run to force a complete reload of all user commands.

In addition, new user commands that are placed in theMyUCMDs directory are
automatically active without needing to specify]Settings cmddir -permanent.

On the Linux operating system, theMyUCMDs directory is located directly under
the $HOME directory.

On themacOS operating system, theMyUCMDs directory is located directly under
the $HOME directory.

On theMicrosoft Windows operating system, the MyUCMDs directory is located
directly under the %USERPROFILE%\Documents directory.

revision20181005_230 23

User Commands User Guide

5 Predefined User Commands

Related user commands with common features can be grouped under a single name (see Section
3.5). This chapter introduces the predefined groups (as summarised in Table 5-1) and their
constituent user commands.

Group Description

ARRAY User commands that relate to arrays or variables.

CALC User commands that manipulate data.

DEVOPS User commands that relate to development and operations.

FILE User commands that relate to files.

FN User commands that relate to functions and operators.

MSWIN
User commands that relate to theMicrosoft Windows operating
system.

NS User commands that relate to namespaces.

OUTPUT
User commands that change the way in which arrays are displayed in a
Session.

PERFORMANCE User commands that collect and analyse CPU consumption data.

SALT
User commands that perform the same actions as the SALT functions
of the same name found in ⎕SE.SALT.

Table 5-1: User Command Groups

revision20181005_230 24

User Commands User Guide

Group Description

SAMPLES

User commands that demonstrate the use ofmultiple levels of help
and parsing user command lines.

This group is only displayed by]? and]?+ if the path
[SALT]/study is added to the cmddir global parameter
(see Section 5.10.9).

TOOLS
User commands that can assist developers by retrieving and
presenting information without changing the underlying code.

TRANSFER
User commands that convert workspaces between files written using
other dialects of APL or older versions of Dyalog and the current
Dyalog version.

UCMD User commands that manage the user command framework.

WS User commands that relate to workspaces.

Table 5-1: User Command Groups (continued)

For information on the precise syntax for each user command, the arguments that
can be supplied to it and themodifiers that it can take, enter]Help <cmd> or]?
<cmd> in a Dyalog Session.

5.1 ARRAY Group
The ARRAY group contains user commands that relate to arrays or variables.

5.1.1]Compare

This user command compares any two APL objects for which ⎕NC is 2 (variables) or 9
(namespaces) and returns the differences between them.

EXAMPLE

varA←8,1↓varB←⍳9
]ARRAY.Compare varA varB

objects are num vectors
elements: 1 different (⎕IO=1)
Var1 8 2 3 4 5 6 7 8 9 Var2 1 2 3 4 5 6 7 8 9

revision20181005_230 25

User Commands User Guide

5.1.2]Edit

This user command opens the specified array in the appropriate editor:

l On theMicrosoft Windows operating system:
o the Unicode edition of Dyalog opens the Array Editor.
o the Classic edition of Dyalog opens the ⎕WC grid-based editor.

l On all other operating systems, the default Editwindow is opened.

EXAMPLE

arr←⍳2 3
]ARRAY.Edit arr

Figure 5-1: The Array Editor (Unicode edition of Dyalog for Microsoft Windows)

5.2 CALC Group
The CALC group contains user commands that manipulate data.

5.2.1]Factors

This user command returns the prime factors of the specified integer.

EXAMPLE

]Factors 123456789
3 3 3607 3803

revision20181005_230 26

User Commands User Guide

5.2.2]FromHex

This user command converts a list of hexadecimal representations of integers to a
numeric vector.

EXAMPLE

]FromHex 64 100
100 256

5.2.3]PivotTable

This user command provides pivot table functionality; the array that is to have pivot table
functionality applied to it must have no more than three columns.

EXAMPLES

M←(20 2⍴'C3C3C4B4C2B2D1C4A4C1B3B1C1B2A0A1D1B0C1C4'), 4 3 4 8
3 3 9 6 5 9 2 7 7 1 6 5 4 7 6 9

]PivotTable M ⍝ default: count of unique M[;1 2]
3 4 2 1 0 Total

C 2 3 1 3 0 9
B 1 1 2 1 1 6
D 0 0 0 2 0 2
A 0 1 0 1 1 3
Total 3 5 3 7 2 20

]PivotTable M -f=+/ ⍝ sum M[;3] by unique M[;1 2]
3 4 2 1 0 Total

C 7 19 3 22 0 51
B 2 8 4 7 7 28
D 0 0 0 13 0 13
A 0 5 0 5 6 16
Total 9 32 7 47 13 108

]PivotTable "(5 2⍴'GrpA' 'case1' 'GrpB' 'case1' 'GrpB'
'case2' 'GrpA' 'case1' 'GrpB' 'case2'),⍳5" -f=+/

case1 case2 Total
GrpA 5 0 5
GrpB 2 8 10
Total 7 8 15

revision20181005_230 27

User Commands User Guide

5.2.4]ToHex

This user command converts integers to a vector of text vectors containing the
hexadecimal representation of each number. If the argument is an expression containing
integers, then the expression is evaluated and the hexadecimal representation of the
solution is returned.

EXAMPLE

]ToHex 100 256
64 100

]ToHex 100+256
164

5.3 DEVOPS Group
The DEVOPS group contains user commands that relate to development and operations.

5.3.1]DBuild

This user command executes one or more DyalogBuild scripts.

This user command is part of an experimental build/test framework used internally
at Dyalog. Contact support@dyalog.com for more information.

5.3.2]DTest

This user command runs a selection of functions named test_* from a namespace, file or
folder.

This user command is part of an experimental build/test framework used internally
at Dyalog. Contact support@dyalog.com for more information.

5.3.3]Link

This user command links a namespace and a directory, synchronising changes.

For more information, see https://github.com/Dyalog/link/blob/master/README.md.

5.4 FILE Group
The FILE group contains user commands that relate to files.

revision20181005_230 28

User Commands User Guide

mailto:support@dyalog.com
mailto:support@dyalog.com
https://github.com/Dyalog/link/blob/master/README.md

5.4.1]CD

If no argument is supplied, then this user command reports the current directory; if an
argument is specified, then this user command reports the current directory and then
updates it to the one specified.

EXAMPLES

]CD
C:\Windows\system32

]CD \tmp
C:\Windows\system32

]CD
C:\tmp

5.4.2]Collect

This user command merges all the files that have a path/name starting with the specified
pattern into a single file.

This is particularly useful when]Split has been used on a file (see Section 5.4.8) and the
resultant files subsequently need to be reassembled.

EXAMPLE

To merge all files starting with \tmp\file.zip and followed by 001, 002, 003 and so on into
a single file called \temp\px.zip:

]Collect \tmp\file.zip -newname=\temp\px.zip

5.4.3]Compare

This user command compares each component within a component file with the
component that has the same number in a second component file.

EXAMPLE

]FILE.Compare fileA fileB
Comparing file <fileA>

with <fileB>
fileA has 2 components starting at 1
fileB has 2 components starting at 1

Comparing 2 components

revision20181005_230 29

User Commands User Guide

⍟⍟⍟ Component 2
objects are num vectors
Var1 1 2 3 4 5 Var2 1 2 3 4 5 6 7 8 9 10

⍟⍟⍟ Comparing access matrices (no difference)

If fileA comprises components 1 to 10 and fileB comprises components 6 to 22
then only components 6 to 10will be compared.

5.4.4]Edit

This user command opens the specified native file as an editable text file in the standard
in-Session Editor.

EXAMPLE

]FILE.Edit C:\Users\fiona\Samples\UTF8.txt

]FILE.Edit C:\Users\fiona\Samples\UTF16-BOM.txt

5.4.5]Find

This user command searches for the specified search string in, by default, .dyalog files in
the current SALT working directory (as returned by]Settings workdir) and its
sub-directories.

It displays a list of the files (with full paths) containing the specified string and the line
numbers within each file on which the specified string occurs.

EXAMPLES

To identify all occurrences of the string "ABC" in all .dyalog files in the \temp directory and
its sub-directories:

]FILE.Find ABC -folder=\temp

To identify all occurrences of the string "ABC" and all seven-letter words in all .txt or .log
files in the current SALT working directory and its sub-directories:

]FILE.Find \b(ABC|\w{7})\b -typ=txt,log -regex

5.4.6]Open

This user command opens directories and files, including files that are external to Dyalog,
using the appropriate program (the default program can be overridden by including the
-using=<program>modifier). If no argument is provided, then a standardWindows

revision20181005_230 30

User Commands User Guide

Explorerwindow is displayed in which the directory/file can be selected.

EXAMPLE

]Open C:\Users\jason\Desktop\document.txt

5.4.7]Replace

This user command searches for the specified search string in, by default, .dyalog files in
the current SALT working directory (as returned by]Settings workdir) and its
sub-directories and replaces it with the specified replacement string.

It displays the number of changes made.

EXAMPLES

To replace "ABC" with "XYZ" in all .dyalog files in the \tmp directory:
]Replace ABC XYZ -folder=\tmp

Total 23 changes made

To reverse every occurrence of two words that follows "Name:" in all .dyalog files in the
current SALT working directory (for example, "Name: Ken Iverson" becomes "Name:
Iverson, Ken"):

]Replace "Name:\s+(\w+)\s+(\w+)" "Name: \2, \1" -regex
Total 31 changes made

5.4.8]Split

This user command splits the specified file into the stated number of smaller files
(maximum 999) of equal size or multiple individual files of the stated size.

EXAMPLES

To split FileA into five individual files (called FileA-01, FileA-02, and so on):
]Split FileA –chunk=5

To split FileA into individual files (called FileA-01, FileA-02, and so on) of 5MB each:
]Split FileA –chunk=5M

5.4.9]ToLarge

This user command converts all small span component files in the specified directory into
large span component files.

revision20181005_230 31

User Commands User Guide

EXAMPLE

]ToLarge \project -recursive -verbose -backup=.32
* <C:\project\132u64b.DCF> is already 64b
*** <C:\project\to\x1.DCF> is tied
...27 files modified

This user command uses ⎕FCOPY to perform the conversion. This means that it can take a
considerable amount of time to execute if there are very large files, but all the timestamps
are preserved.

5.4.10]ToQuadTS

This user command takes a timestamp (for example, the last time a component within a
component file was updated) and converts it into its ⎕TS equivalent (a vector of 7
numbers).

EXAMPLE

]ToQuadTS 3⌷⎕frdci 4 1
2013 9 9 23 16 28 0

5.4.11]Touch

This user command checks whether the specified file exists in the current/specified
location and creates it if it cannot be found.

EXAMPLE

]Touch abc.xyz

5.5 FN Group
The FN group contains user commands that relate to functions and operators.

5.5.1]Align

This user command searches for comments at the end of a line of code within the
specified function and aligns them to the stated column (defaults to column 40).

EXAMPLE

To align all comments at column 30 in functions that start with "HTML" and display the
names of all the functions that have been modified in)FNS format:

]Align HTML* -offset=30

revision20181005_230 32

User Commands User Guide

5.5.2]Calls

This user command produces the calling tree of the specified function in the specified
class/namespace (defaults to the current namespace).

EXAMPLE

]Calls ClassFolder

Level 1: →ClassFolder
⍝ Produce full path by merging root and folder name

F:specialName

Level 2: ClassFolder→specialName
⍝ Change any [name] into path

F:getEnvir F:lCase F:uCase

Level 3: specialName→getEnvir
F:rlb F:splitOn F:splitOn1st F:SALTsetFile

Level 4: getEnvir→SALTsetFile

Level 4: getEnvir→splitOn1st
⍝ Split on 1st occurrence of any chars in str

Level 4: getEnvir→splitOn

Level 4: getEnvir→rlb

Level 3: specialName→uCase
F:LU

Level 4: uCase→LU

Level 3: specialName→lCase
*:LU

5.5.3]Compare

This user command compares any two APL objects for which ⎕NC is 3 (functions) or 4
(operators) and returns the differences between them (including timestamps).

EXAMPLE

∇fna ∇fnb
[1] same line [1] same line
[2] fna line 2 [2] fnb line 2
[3] same line 3 [3] same line 3
[4] ⍝ comment deleted [4] new common line

revision20181005_230 33

User Commands User Guide

[5] new common line [5] ⍝ new comment
∇ ∇

]FN.Compare fna fnb
-[0] fna
+ fnb
[1] same line

-[2] fna line 2
+ fnb line 2
[3] same line 3

-[4] ⍝ comment deleted
[5] new common line

+ ⍝ new comment

5.5.4]Defs

This user command lists the names and definitions of all single-line dfns, dops, derived
functions and trains in the active workspace.

EXAMPLE

]Defs
at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}
derv←{(⍳⍵),¨box⊃⍵*÷2}{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}
pars←⊃∘(+.×/)
rcb←{(⍳⍵),¨box⊃⍵*÷2}

5.5.5]DInput

This user command is used to execute or definemulti line d-expressions (dfns and dops)

EXAMPLE

]DInput
····{
········⍵ ⍵
····}{
········⍺⍺ ⍺⍺ ⍵
····}7
7 7 7 7

revision20181005_230 34

User Commands User Guide

5.5.6]Latest

This user command lists the names of any functions changed since the specified date
(default is the current system date), with themost recently changed function listed first.
Dates are specified as YYYYMMDD but can be shortened to MMDD if the year of interest is
the current year; a leading 0 can also then be dropped. For example, 213 is February 13th
of the current year. Alternatively, the number of days, weeks or months prior to the
current date can be specified using a negative number. Additional filters can also be
applied, for example, only those functions that have been edited by a specific user or only
the last n files that have changed.

EXAMPLES

To list all the files that have been changed since 1 January 2014:
]Latest 20140101

#.HelpExample.Help #.HelpExample.List #.HelpExample.Run

To list only the files that have been changed by a specific user (Pete) in the last three
weeks:

]Latest ¯3w -by=pete
#.HelpExample.Help

To list only the last two files that have been changed :
]Latest -last=2

#.HelpExample.Help #.HelpExample.List

5.5.7]ReorderLocals

This user command changes the order in which the local names in the header of a tradfn
(optionally, recursing through the hierarchy beneath the current namespace).

EXAMPLE

To change the order in which the local names in all tradfns that start with the letter "F" are
listed:

⎕VR 'Fnml'
∇ Fnml;⎕PP;X;⍙;a;_;aa;Aa;aaAA;aA;⎕IO ⍝ locals anyone?

[1] ...
∇

]ReorderLocals F*
3 fns processed, 1 changed

revision20181005_230 35

User Commands User Guide

⎕VR 'Fnml'
∇ Fnml;a;aa;aA;Aa;aaAA;X;⍙;_;⎕IO;⎕PP ⍝ locals anyone?

[1] ...
∇

5.6 MSWIN Group
TheMSWIN group contains user commands that relate to theMicrosoft Windows
operating system.

5.6.1]Assemblies
This user command only works on theMicrosoft Windows operating system.

This user command lists all the .NET assemblies loaded in the current application domain.

EXAMPLE

]Assemblies
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
bridge140_unicode, Version=14.0.20631.0, Culture=neutral,
PublicKeyToken=eb5ebc232de94dcf
msvcm80, Version=8.0.50727.6195, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a
dyalognet, Version=14.0.20631.0, Culture=neutral,
PublicKeyToken=eb5ebc232de94dcf
System.Configuration, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

5.6.2]Caption
This user command only works on theMicrosoft Windows operating system.

This user command enables a user to change the caption of various windows in the
Session.

revision20181005_230 36

User Commands User Guide

EXAMPLES

To change the Session title to "ABC":
]Caption session ABC

XYZ

To restore the original value:
]Caption session''

ABC

To change the Editor window's title to "What's going on (XX)" where "XX" is themachine
size (32/64):

]Caption editor "What's going on ({BITS})" -window=editor

This user command changes registry settings. This means that:
l All instances of this Dyalog installation are changed.
l Only users with administrator access can use this user command.

5.6.3]CopyReg
This user command only works on theMicrosoft Windows operating system.

This user command copies the registry settings of the specified installed Dyalog versions
to a file and, optionally, to another installed Dyalog version.

Two of themodifiers that can be specified interact to generate different outcomes; these
are detailed in Table 5-2:

-regonly?
 Yes No

-to
?

Yes
.reg file: default settings (formatted
for specified destination version),
nothing copied into registry

.reg file: all settings,
default settings copied into registry

No
.reg file: default settings,
nothing copied into registry

.reg file: all settings,
nothing copied into registry

Table 5-2: Results of interactions of the -regonly and -tomodifiers

revision20181005_230 37

User Commands User Guide

EXAMPLES

To copy all the registry settings defined for the Dyalog version 14.1 installation to the .reg
registry settings file in the default location:

]CopyReg 141

To copy the full set of registry settings defined for the Dyalog version 14.1 installation to
the .reg registry settings file in the \tmp\ directory:

]CopyReg 141 -folder=\tmp\

To copy only the default set of registry settings defined for the Dyalog version 15.0
installation to the .reg registry settings file in the default location:

]CopyReg 15 -regonly

To copy the default registry settings defined for the Dyalog 64-bit version 13.2 Unicode
installation to the Dyalog 64-bit version 16.0 Unicode installation on the samemachine:

]CopyReg "13.2 Unicode 64" -to=16U64

To copy only the default set of registry settings defined for the Dyalog version 14.1
installation to the .reg registry settings file in the default location in a format that can then
be imported into a Dyalog 64-bit version 15.0 Unicode installation:

]CopyReg 141 -regonly -to=15U64

5.6.4]FileAssociations
This user command only works on theMicrosoft Windows operating system and
requires administrator rights.

This user command associates files that have the extension .dws, .dyalog or .dyappwith
a specific Dyalog version. This is only relevant if you havemultiple versions of Dyalog
installed and want to change the version in which .dws, .dyalog or .dyapp files open when
double-clicked on.

EXAMPLE

]FileAssociations

revision20181005_230 38

User Commands User Guide

Figure 5-2: The File Associations dialog box

5.6.5]GUIProps
This user command only works on theMicrosoft Windows operating system.

This user command reports the properties (and their values) of the specified GUI object
or, if none is provided, the object on which the Session has focus (the object whose name
appears in the bottom left corner of the Session log). This only works for GUI objects that
have been created using the ⎕WC syntax, not for GUI objects that have been created using
other techniques.

EXAMPLE

't' ⎕WC 'timer' ('active'0)

]GuiProps t
Properties of #.t Interval:1000 Event: KeepOnClose:0
Type:Timer Active:0 Data:
Properties of #.t
MethodList: Detach Wait
ChildList: Timer
EventList: Close Create Timer

5.6.6]KeyPress
This user command only works on theMicrosoft Windows operating system.

revision20181005_230 39

User Commands User Guide

This user command displays the elements of the event message vector in a dialog box
when an event is triggered (that is, a key is pressed). If run from the Sessionwindow, data
is also displayed there.

Keypress event information includes the keynumber for a particular key. This is needed
when:

l setting up an Accelerator property for a GUI object.
l editing the keyboard translate .DIN files for the IME to enable keyboard layout

customisation.
l performing some action in the keypress event callback for a particular key.

For more information on the event message vector, see theDyalog for Microsoft
Windows Object Reference Guide.

EXAMPLE

]KeyPress

Figure 5-3: KeyPress Event dialog box

5.7 NS Group
The NS group contains user commands that relate to namespaces.

revision20181005_230 40

User Commands User Guide

5.7.1]ScriptUpdate

This user command updates scripted namespaces/classes to take account of newly added
or deleted variables, functions and operators.

In Dyalog, the only way to update the source of a scripted object is to edit the source;
using ⎕FX or assignment does not update the source. This user command identifies
variables, functions and operators that exist in the specified scripted object but are not
part of the source and adds them to the source using ⎕FIX. It also identifies variables,
functions and operators that do not exist in the specified scripted object but are part of
the source and deletes them from the source using ⎕FIX.

EXAMPLE

)LOAD myns
)CS myns
V←⍳9
⎕FX 'myfn' '2+2'

]ScriptUpdate
Added 1 variables and 1 functions

5.7.2]Summary

This user command returns summary information (scope, size and syntax) of each of the
functions in the specified scripted namespace/class. For an explanation of the scope and
syntax codes, enter]??Summary in a Dyalog Session.

EXAMPLE

]Summary ⎕SE.Parser
Name Scope Size Syntax
Parse P 16904 r1f
Propagate 2664 r2f
Quotes 2176 r1f
Switch 2536 r2f
deQuote 1432 r1f
fixCase 120 r2f
if 48 r2f
init PC 13960 n1f
splitParms 3320 r1f
sqz 1064 r2f
upperCase 1152 r2f
xCut 840 r2f

revision20181005_230 41

User Commands User Guide

5.7.3]Xref

This user command generates a cross-reference of the objects in a scripted object.

It produces a table showing all objects referred to (columns) against the function or
operator that refers to them (rows). The symbols in the table describe the nature of the
reference: ○means local, Gmean global, Fmeans function, Lmeans label and ! identifies
an unused localised name.

EXAMPLES

src←':Class cl' ':Field myfield←1'
src,←'∇foo a;var' 'a←1' 'goo' '∇'
src,←'∇goo;var' 'var←myfield' '∇'
src,←⊂':EndClass'
⎕FIX src

]Xref cl
var

myfield.
goo..
a...
↓↓↓↓

[FNS] - -
foo ○F !
goo .G○

This shows that var appears in both foo and goo, but in foo it only appears in the
function header. myfield is referenced in goo but is external to it, so appears as a Global
to goo.

Dots, dashes, colons and arrows only serve as alignment decorators and have no special
meaning.

]Xref cl -raw
┌─────┬───────────────────────┐
│ │┌─┬───┬───┬───────┬───┐│
│○ F !││a│foo│goo│myfield│var││
│ G○│└─┴───┴───┴───────┴───┘│
│ │ │
│ │ │
└─────┴───────────────────────┘

revision20181005_230 42

User Commands User Guide

5.8 OUTPUT Group
The OUTPUT group contains user commands that change the way in which arrays are
displayed in a Session.

5.8.1]Box

Identical to]Boxing (see Section 5.8.2) – included for convenience when the auto-
complete feature is not available. A function key can be defined with which to toggle]Box
on and off.

5.8.2]Boxing

This user command changes the default display of arrays, functions and operators in the
Session window. The output is similar to that of the]Disp user command (see Section
5.8.3) but without any border decoration indicating subarray shape and type.

EXAMPLE

⍳¨⍳2 3
1 1 1 1 1 2 1 1 1 2 1 3
1 1 1 1 1 2 1 1 1 2 1 3
2 1 2 1 2 2 2 1 2 2 2 3

]Boxing on
Was OFF

⍳¨⍳2 3
┌─────┬─────────┬─────────────┐
│┌───┐│┌───┬───┐│┌───┬───┬───┐│
││1 1│││1 1│1 2│││1 1│1 2│1 3││
│└───┘│└───┴───┘│└───┴───┴───┘│
├─────┼─────────┼─────────────┤
│┌───┐│┌───┬───┐│┌───┬───┬───┐│
││1 1│││1 1│1 2│││1 1│1 2│1 3││
│├───┤│├───┼───┤│├───┼───┼───┤│
││2 1│││2 1│2 2│││2 1│2 2│2 3││
│└───┘│└───┴───┘│└───┴───┴───┘│
└─────┴─────────┴─────────────┘

+⌿÷≢
┌─────┬─┬─┐
│┌─┬─┐│÷│≢│
││+│⌿││ │ │

revision20181005_230 43

User Commands User Guide

│└─┴─┘│ │ │
└─────┴─┴─┘

5.8.3]Disp

This user command displays the specified array with vertical and horizontal lines
separating each sub array. Characters embedded in these borders indicate sub-array
shape and type.

Equivalent to the disp function from supplied workspace dfns.dws.

EXAMPLE

]Disp ⍳¨⍳2 3
┌→────┬─────────┬─────────────┐
↓┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
├────→┼────────→┼────────────→┤
│┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│├~─→┤│├~─→┼~─→┤│├~─→┼~─→┼~─→┤│
││2 1│││2 1│2 2│││2 1│2 2│2 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
└────→┴────────→┴────────────→┘

5.8.4]Display

This user command displays the specified array with boxes bordering each sub array.
Characters embedded in the borders indicate sub-array shape and type.

Equivalent to the display function from supplied workspace dfns.dws.

EXAMPLE

]Display ⍳¨⍳2 3
┌→──┐
↓ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
│ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │

revision20181005_230 44

User Commands User Guide

│ │ ┌→──┐ │ │ ┌→──┐ ┌→──┐ │ │ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │2 1│ │ │ │2 1│ │2 2│ │ │ │2 1│ │2 2│ │2 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
└∊──┘

5.8.5]Find

This user command detects where programs produce output while running code; each
time output is produced, the generating program and the line of that program are
identified on the preceding line. Lines that start with ⎕← are only shown if the
-includequadoutputmodifier is included in the call.

EXAMPLE

∇ foo
[1] 'Line not starting with ⎕'
[2] ⎕←'Line with ⎕←'

∇

]OUTPUT.Find on -includequadoutput
Was off

foo
>> Output from #.foo[1]
Line not starting with ⎕
⎕← Output from #.foo[2]
Line with ⎕←

]OUTPUT.Find on
Was on

foo
>> Output from #.foo[1]
Line not starting with ⎕
Line with ⎕←

5.8.6]Format

This user command reformats a simple text vector, a vector of text vectors (paragraphs)
or literal text according to specified margins.

EXAMPLES

To display the current user's name indented by half a screen:
]Format ⎕AN -left=.5

karen

revision20181005_230 45

User Commands User Guide

To indent the first line of the supplied text by the width of 4 characters and have a right
margin the width of 88 characters:

]Format "'Mary had a little lamb.'" -first=4 -right=88
Mary had a

little lamb.

To indent the first line of each name by 2 characters and have a right margin the width of
78 characters:

A←'I wandered lonely as a cloud'
B←'That floats on high o''er vales and hills,'
C←'When all at once I saw a crowd,'
D←'A host, of golden daffodils;'

]Format A B C D -first=2 -right=78
I wandered lonely as a cloud
That floats on high o'er

vales and hills,
When all at once I saw a

crowd,
A host, of golden daffodils;

5.8.7]Layout

This user command reformats the specified text with margins and indentations inferred
from additional spaces within the text.

EXAMPLE

⎕PW←42

T←'APL: Kenneth Eugene Iverson was a'
T,←'Canadian computer scientist noted'
T,←'for the development of the APL'
T,←'programming language in 1962.'

]Layout T
APL: Kenneth Eugene Iverson was a

Canadian computer scientist noted
for the development of the APL
programming language in 1962.

revision20181005_230 46

User Commands User Guide

5.8.8]Rows

This user command impacts the display of any array that is subsequently entered into the
Session by limiting the number of rows that are output.

EXAMPLE

]rows -fold=3
Was off

⍳10 4
┌→───┬────┬────┬────┐
↓1 1 │1 2 │1 3 │1 4 │
├~──→┼~──→┼~──→┼~──→┤
│2 1 │2 2 │2 3 │2 4 │
├~──→┼~──→┼~──→┼~──→┤
│3 1 │3 2 │3 3 │3 4 │
├~──→┼~──→┼~──→┼~──→┤
·····················
├~──→┼~──→┼~──→┼~──→┤
│10 1│10 2│10 3│10 4│
└~──→┴~──→┴~──→┴~──→┘

5.9 PERFORMANCE Group
The PERFORMANCE group contains user commands that measure CPU consumption in
various ways.

5.9.1]Profile

This user command makes it easy to locate the points in your application at which
significant quantities of CPU/elapsed time is spent, facilitating the tuning process.

For more information, see theDyalog Application Tuning Guide.

EXAMPLE

)LOAD dfns
]Profile -expr="⍴queens 8"

12

revision20181005_230 47

User Commands User Guide

Figure 5-4: The]Profile Dashboard

5.9.2]RunTime

This user command measures and reports the average CPU time and elapsed time
required to execute each of the specified APL expressions (if the expression includes
spaces then it must be enclosed in quotation marks).

EXAMPLE

To benchmark a single expression by executing that expression once:
]RunTime {+/1=⍵∨⍳⍵}¨⍳1000

* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000"
(ms)

CPU (avg): 15
Elapsed: 20

To benchmark a single expression by executing that expression repeatedly for 1 second
and then averaging the results:

]RunTime {+/1=⍵∨⍳⍵}¨⍳1000 -repeat=1s
* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000", repeat=1s

Exp

revision20181005_230 48

User Commands User Guide

CPU (avg): 18.375
Elapsed: 18.5

To benchmark two expressions by executing them 50 times and then averaging the
results, returning the results as a matrix of two rows (for the two expressions) and four
columns (⎕MONITOR CPU and elapsed times and ⎕AI CPU and elapsed times):

]RunTime {+/1=⍵∨⍳⍵}¨⍳100 ⍳⍨⍳1e6 -details=ai -rep=50
0.3 0.2 0.3 0.2
2.5 2.24 2.5 2.24

To compare the benchmarking statistics of two expressions:
]RunTime ⍴⍴⍳9 ⍴∘⍴⍳9 -comp

⍴⍴⍳9 → 1.6E¯7 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
⍴∘⍴⍳9 → 3.2E¯7 | +93% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

5.9.3]SpaceNeeded

This user command returns the space (in bytes) required to execute the specified
expressions.

A large ⎕WA can result in this user command taking a significant time to execute.

EXAMPLE

]SpaceNeeded ⍳1e6 ⍴⍳8
⍳1e6 4000102
⍴⍳8 818

5.10 SALT Group
The SALT group contains user commands that perform the same actions as the SALT
functions of the same name found in ⎕SE.SALT. For more information on SALT, see the
SALT User Guide.

APL objects that have been saved using SALT/user commands (that is, by calling
either the Save or the Snap SALT function) or by running the]Save or]Snap user
commands are referred to as SALTed.

revision20181005_230 49

User Commands User Guide

5.10.1]Clean

Analogous to ⎕SE.SALT.Clean.

This user command removes all the tags associated with SALT from each object in the
workspace. Running this user command means that SALT no longer saves changes that
aremade in the workspace to the objects that were untagged.

EXAMPLES

To remove the SALT tags from all APL objects in the active workspace:
]Clean

To remove the SALT tags from APL objects objA and objB in the active workspace and
then delete the files associated with those two objects:

]Clean objA objB -deletefiles

5.10.2]Compare

Analogous to ⎕SE.SALT.Compare.

This user command identifies the differences between two files.

EXAMPLE

]SALT.Compare C:\Users\andy\Desktop\abc.dyalog
C:\Users\andy\Desktop\abc2.dyalog

Comparing C:\Users\andy\Desktop\abc.dyalog
with C:\Users\andy\Desktop\abc2.dyalog

[0] cmpx←{ ⍝ Approx expression timings.
-[1] ⍺←⍬ ⍝ options: raw cpu cols.
+ ⍺←⍬ ⍝ options: raw cp.
[2] 1=≡,⍵:⍺ ∇⊂,⍵ ⍝ single expression: enclose.
[3] ⍺{ ⍝ options.

-[4] (⍎⍵)-⎕AI ⍝ time of ⍺ expr-iterations.
[5] }{⎕IO ⎕ML←0 1 ⍝ local sysvars (see Notes).
[6] dflt←{⍵+⍺×⍵=0} ⍝ ⍺ default if ⍵=0.

5.10.3]List

Analogous to ⎕SE.SALT.List.

revision20181005_230 50

User Commands User Guide

This user command lists the files/directories in a specified location (by default, this is the
[SALT] directory.

EXAMPLE

]List
Type Name Versions Size Last Update
<DIR> core 2015/03/10 10:41:19
<DIR> lib 2015/03/10 10:41:19
<DIR> spice 2015/03/20 10:44:56
<DIR> study 2015/03/10 10:41:19
<DIR> tools 2015/03/10 10:41:19

5.10.4]Load

Analogous to ⎕SE.SALT.Load.

This user command loads the latest (highest numbered) version of an APL object into the
namespace that the user command is run in. By default, the link between the loaded APL
object and its source is maintained and the loaded APL object is assigned a global name.

The result is affected by the presence of the -nonamemodifier:
l if -noname is specified, then the result is the value of the APL object loaded
l if -noname is not specified, then the result depends on the nameclass of the APL

object loaded:
o if the APL object loaded has a nameclass of 9, then a reference to the loaded

namespace is returned.
o if the APL object loaded has a nameclass of 2, 3 or 4, then the name of the

function/variable/operator loaded is returned.

EXAMPLE

]Load C:\Users\jason\Desktop\DIR\abc
#.abc

5.10.5]Refresh

This user command reloads themost recent version of all SALTed objects that have been
changed. This situation can occur if you)LOAD a workspace that contains stale objects
(for example).

EXAMPLE

]Refresh
8 objects refreshed

revision20181005_230 51

User Commands User Guide

5.10.6]RemoveVersions

Analogous to ⎕SE.SALT.RemoveVersions.

This user command deletes a version (or range of versions) of a versioned file and returns
the number of versions that have been deleted.

EXAMPLE

]List \myproject -versions
Type Name Version Size Last Update

myprog [18] 150 2015/03/30 13:61:02
myprog [17] 215 2015/03/29 16:16:31
myprog [16] 163 2015/03/28 9:88:92
myprog [15] 105 2015/03/26 10:80:47
myprog [14] 120 2015/03/21 11:22:53
myprog [13] 135 2015/03/12 20:09:69
myprog [12] 104 2015/03/02 11:83:86

]RemoveVersions \myproject\myprog -all -nopromt
7 versions deleted.

]List \myproject
Type Name Versions Size Last Update

myprog 10 2015/03/30 18:53:17

5.10.7]Save

Analogous to ⎕SE.SALT.Save.

This user command saves an APL object in a native text file and returns the full path and
name of the file that it saves. APL objects that are already SALTed are saved in the original
location by default.

EXAMPLE

To save APL object ABC as a file called abc.dyalog in directory DIR (creating directory DIR if
it does not already exist):

]Save ABC C:\Users\jason\Desktop\DIR\abc -makedir
C:\Users\jason\Desktop\DIR\abc.dyalog

5.10.8]Set

Analogous to ⎕SE.SALT.Settings.

revision20181005_230 52

User Commands User Guide

Identical to]Settings (see Section 5.10.9) – included for convenience when the
auto-complete feature is not available.

5.10.9]Settings

Analogous to ⎕SE.SALT.Settings.

The values of certain global parameters are retrieved at the start of a Dyalog Session.
These Session parameters remain active for the Session unless they aremodified – one
way in which they can bemodified is with the]Settings user command.

EXAMPLES

To return the current values of the Session parameters:
]Settings

compare apl
cmddir C:\Program Files\Dyalog APL 16.0 Unicode\SALT\Spice
debug 0
editor notepad
edprompt 1
mapprimitives 1
newcmd auto
track
varfmt xml
workdir C:\Program Files\Dyalog APL 16.0 Unicode\SALT

To remove the requirement to answer prompts when saving objects and have this
change persist between Sessions:

]Settings edprompt 0 -permanent

The global parameters that can be changed by running the]Settings user
command can also impact SALT functionality – for more information on SALT see
the SALT User Guide.

The global parameters that impact user commands are:
l cmddir – the full path to the directory (or list of directories) from which to retrieve

user commands
l debug – specifies the level of debugging to use. Possible values are:

o 0 : no debugging and report errors in the environment
o >0 : stop if an error is encountered

l edprompt – specifies whether a user is prompted for confirmation to overwrite the
file when modifying a script. Possible values are:

revision20181005_230 53

User Commands User Guide

o 0 or n : the user is never prompted for confirmation
o 1 or y: the user is prompted for confirmation each time a script is modified

l newcmd – specifies when new user commands become effective in the user
interface. Possible values are:

o auto : new commands are detected automatically
o manual : new commands do not become effective until the user command

]UReset is run.

The default value for newcmd is auto except on the Raspberry Pi, where the
default value ismanual.

5.10.10]Snap

Analogous to ⎕SE.SALT.Snap.

Although the]Save user command enables individual APL objects to be saved, saving all
the APL objects in a workspace using the]Save user command would be a repetitive
process. Instead, the]Snap user command performs a bulk save of every APL object in
the workspace in individual native text files – all newAPL objects are saved to the specified
directory and all modified APL objects are saved to the appropriate location. A list of the
names of the APL objects that have been successfully saved is returned. If the]Snap user
command stops for any reason, then everything that has already been saved remains
saved and a list of the names of the APL objects that have been successfully saved is
returned.

EXAMPLE

a←1
'myns'⎕ns'a'

]Snap
#.a #.myns.a

5.11 TOOLS Group
The TOOLS group contains user commands that can assist developers by retrieving and
presenting information without changing the underlying code.

5.11.1]ADoc

This user command generates HTML documentation from script(s) and displays it in an
internet browser window.

revision20181005_230 54

User Commands User Guide

To view the complete ADoc documentation in a browser window:
]???ADoc

5.11.2]Calendar

This user command displays a calendar for the specified month and year (omitting both
arguments returns the current month in the current year, omitting the year returns the
specified month in the current year, omitting themonth returns every month in the
specified year).

EXAMPLE

]Calendar 6 1974
June 1974

Su Mo Tu We Th Fr Sa
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

5.11.3]Chart

This user command opens the Chart Wizard and SharpPlot Chart Viewer to display the
specified expression.

EXAMPLE

]Chart {+/1=⍵∨⍳⍵}¨⍳1000

Figure 5-5: The Chart Wizard and SharpPlot Chart Viewer

revision20181005_230 55

User Commands User Guide

5.11.4]Demo

This user command provides a playback mechanism for live demonstrations of code
written in Dyalog. It takes a script (the specified text file) name as an argument and
executes each APL line in it after displaying it on the screen. A function key pair can be
defined with which to step forwards and backwards through the script being
demonstrated.

EXAMPLE

]Demo \tmp\mydemo

5.11.5]Help

This user command opens Dyalog's online documentation on (or provides a URL for) any
APL concept.

EXAMPLES

]Help ⍝ opens browser on help front page

]Help ⌹ -url ⍝ gives link to Domino page

]Help]Save ⍝ displays help for the]Save user command

5.11.6]Version

This user command reports the version numbers of Dyalog, the operating system, SALT,
UCMD and .NET for the current Session, as well as the build ID and workspace version. If
the name of a file containing a workspace is specified as an argument, then theminimum
version of Dyalog necessary to)LOAD that workspace is returned.

EXAMPLE

]Version
Dyalog 16.0.29236 64-bit Unicode, BuildID f37c69de
OS Windows-64, Windows 7 or Windows Server 2008 R2
SALT 2.7
UCMD 2.2
.NET 4.0
WS 16.0

]Version C:\Users\fiona\Samples\wsA.dws
14.0

revision20181005_230 56

User Commands User Guide

5.12 TRANSFER Group
The TRANSFER group contains user commands that convert workspaces between files
written using other dialects of APL or other versions of Dyalog and the current Dyalog
version. For more information, see theDyalog Workspace Transfer Guide.

5.12.1]In

This user command imports workspaces between files written using other dialects of APL
or older versions of Dyalog and the current Dyalog version.

5.12.2]Out

This user command exports workspaces written using the current Dyalog version into files
that are valid for other dialects of APL or older versions of Dyalog.

5.13 UCMD Group
The UCMD group contains user commands that manage the user command framework.

5.13.1]UDebug
The -flagsmodifier should only be used with this user command as directed by
Dyalog Ltd.

This user command facilitates the debugging of custom user commands. When a space
followed by a – character is added as the last item of the user command and the user
command is executed, the – character is removed, a stop is set on line 1 of the Run
function to suspend its execution and the Tracewindow is opened when execution
reaches that line.

If the namespace containing the user command is within the current namespace,
then that version of the namespace is used rather than the script on file.

5.13.2]ULoad

This user command loads the namespace associated with the specified user command
into the active workspace. If a user command is specified that exists in different groups
(for example,]ULoad Compare), all the possibilities are loaded.

revision20181005_230 57

User Commands User Guide

EXAMPLE

]ULoad UCMDHelp
The source code for command "ucmdhelp" has been loaded in
namespace "#.HelpExample"

5.13.3]UMonitor

This user command turns monitoring on or off. When on, invoking a user command
causes its ⎕CR and ⎕MONITOR information to be paired in the global variable
#.UCMDMonitor; this information can be further processed to report code coverage.

EXAMPLE

]UMonitor on
Was OFF

]ToHex 321
141

]FromHex A23
2595

]UMonitor -report
Legend:
↓ branch never taken
* line ignored

∇∇

** Unable to process program <Run>

∇∇

2 [0] r←tox hex num;HEX;⎕IO;⎕ML;b
2 [1] ⍝ Turn a number into HEX format or the other way

around if la is 0
↓ 2 [2] →(num∨.≠' ')↓⍴r←⍬

2 [3] ⎕ML←⎕IO←0 ⋄ HEX←⎕D,'ABCDEFabcdef'
2 [4] num←b\num/⍨b←~num∊',' ⍝ tolerant of ,

[...]
1 [8] :Else
1 [9] num←'(?<!\d)0x'⎕R''⊢num ⍝ remove any 0x before

the numbers
↓ 1 [10] 'invalid number(s)'⎕SIGNAL 11↓⍨∧/num∊' ',HEX

1 [11] num←(⊂'')~⍨{1↓¨(⍵∊' ')⊂⍵}' ',num ⍝ cut on spaces
1 [12] r←16⊥¨{⍵-6×⍵>15}¨HEX∘⍳¨num

revision20181005_230 58

User Commands User Guide

5.13.4]UNew

This user command opens a template that can be used to input the basic information
pertaining to a new user command.

ANew User Command Wizard is available on theMicrosoft Windows operating
system (press F1 for details when running it).

EXAMPLE

]UNew

Figure 5-6: The New User Command Wizard, with and without the Use modifiers
(switches) checkbox selected (Microsoft Windows only)

5.13.5]UReset

This user command forces a rebuild of the user command cache file. This is necessary to
pick up changes made to files containing user commands (unless the Session is restarted,
in which situation the cache is automatically rebuilt, or the global newcmd parameter has
been set to auto – see Section 5.10.9).

EXAMPLE

]UReset
89 commands reloaded

revision20181005_230 59

User Commands User Guide

5.13.6]USetup

This user command is used to initialise the setup.dyalog file in which Session preferences
are customised and modified, for example, configuration of program function (PF) keys. It
is analogous to ⎕LX in the Dyalog interpreter and is always called when the interpreter is
started.

The directories in which]USetup searches for a setup.dyalog file depends on the
operating system.

On the Linux operating system,]USetup searches for a setup.dyalog file in the
/home/<user>/myUCMDs directory and the /home/<user>/.dyalog/myUCMDs
directory.

On themacOS operating system,]USetup searches for a setup.dyalog file in the
/Users/<user>/myUCMDs directory and the /Users/<user>/.dyalog/myUCMDs
directory.

On theMicrosoft Windows operating system,]USetup searches for a
setup.dyalog file in the%USERPROFILE%\Documents\myUCMDs directory.

If no setup.dyalog file is found in any of these locations, then]USetup searches in all
SALTworkdir directories.

EXAMPLE

]USetup -info
C:\Users\john\Documents\MyUCMDs\setup.dyalog 0

5.13.7]UVersion

This user command reports the framework version number, full name, source file
location, version number, revision number and last commit information for a specified
user command.

EXAMPLE

]UVersion Boxing
framework: 2.3
command:]OUTPUT.Boxing
source: C:\Program Files\Dyalog\Dyalog APL-64 17.0
Unicode\SALT\Spice\output.dyalog
version: 1.30
revision: 33005
commit: 2018 05 01 Adam: help tweaks

revision20181005_230 60

User Commands User Guide

5.14 WS Group
TheWS group contains user commands that relate to workspaces.

5.14.1]Check

This user command performs a workspace integrity check, comparing the contents of the
active workspace against any scripted namespaces and identifying items that occur in one
and not the other.

EXAMPLES

]Check
No problem found.

⎕FIX ':namespace X' 'a←⍳9' ':endnamespace'
X.⎕FX 'Foo' '123'
X.abc←90
]check

These extra objects are found in scripted #.X: Foo abc

5.14.2]Compare

This user command compares any two workspaces and returns the size difference and
the APL object differences between them; it can be thought of as a combination of the
]ARRAY.Compare and]FN.Compare user commands running at a workspace level.

EXAMPLE

]WS.Compare C:\Users\fiona\Samples\wsA.dws
C:\Users\fiona\Samples\wsB.dws
* comparing C:\Users\fiona\Samples\wsA.dws

with C:\Users\fiona\Samples\wsB.dws

NOTE: total sizes differ by 248 bytes.

<...etc...>

5.14.3]Document

This user command lists and details the contents (namespaces, functions, operators and
variables) of your workspace.

revision20181005_230 61

User Commands User Guide

EXAMPLES

To display the contents of the workspace on the screen (this workspace only contains a
single variable, name←3):

]Document

)WSID
CLEAR WS

)FNS

)VARS
name

name (type=I ⍴⍴=0 ⍴=⍬)
3

)OBS

To output the contents of the workspace to a file:
]Document -file=C:\Users\karen\Samples\tmp.txt

Output file = C:\Users\karen\Samples\tmp.txt

5.14.4]FindRefs

This user command attempts to find all references in a workspace and identify where they
are referenced from.

EXAMPLES

)CLEAR
clear ws

A←⎕NS '' ⋄ B←C←D←A
V←0 C 2 99

]FindRefs
#: followed 6 pointers to reach a total of 2 "refs"

Name
#
#.B+4 more

]FindRefs -alias
#: followed 6 pointers to reach a total of 2 "refs"

revision20181005_230 62

User Commands User Guide

Name Alias 1 Alias 2 Alias 3 Alias 4
#
#.B #.C #.D #.V[2] #.A (DF=#.[Namespace])

]FindRefs -alias=3
#: followed 6 pointers to reach a total of 2 "refs"

Name Alias 1 Alias 2 Alias 3
#
#.B #.C #.D #.V[2]+1 more

'X' ⎕NS ''
A.t←X
X.z←A

]FindRefs -loop
#: followed 31 pointers to reach a total of 3 "refs"

Name
#
#.B+11 more
#.X+11 more

1 loop found:

Loop #1: #.B → #.X
#.X = #.B.t
#.B = #.X.z

)CLEAR
clear ws

⎕FIX ':class B' ':endclass'
⎕FIX ':class A:B' ':endclass'
⎕EX 'B'

]FindRefs A
#.A: followed 1 pointers to reach a total of 1 "refs"

Name
#.A

#.A's base class is missing: #.B

revision20181005_230 63

User Commands User Guide

5.14.5]FnsLike

This user command returns a list of APL objects for which ⎕NC is 3 (functions) or 4
(operators) that exist in the current namespace (and, optionally, in the hierarchy beneath
it) and match the specified pattern.

EXAMPLES

To find all APL objects for which ⎕NC is 3 or 4:
]FnsLike

big det else getfile life

To find all APL objects for which ⎕NC is 3 or 4 that contain the letter "e" in their name:
]FnsLike *e*

det else getfile life

5.14.6]Locate

This user command searches for the specified string in the current namespace.

EXAMPLES

To search for the string "queens":
]Locate queens

∇ #.queens (3 found)
[0] queens←{⎕IO ⎕ML←0 1 ⍝ The N-queens problem.

∧ ∧

[24] chars←'·⍟'[(↑⍵)∘.=⍳⍺] ⍝ char array of placed queens.
∧

To search for the string "queens" irrespective of case and ignoring comments:
]Locate queens -insensitive -exclude=C

∇ #.queens (1 found)
[0] queens←{⎕IO ⎕ML←0 1 ⍝ The N-queens problem.

∧

5.14.7]Map

This user command displays the structure of the specified namespace (or the current
namespace if none is specified) in terms of its constituent variables, functions and
operators (identified with ~, ∇ and ∘ respectively). Sub-namespaces are displayed

revision20181005_230 64

User Commands User Guide

recursively.

This user command uses the tree function from supplied workspace dfns.dws.

EXAMPLE

]Map ⎕SE.Dyalog
⎕SE.Dyalog
· Callbacks
· · ∇ WSLoaded
· SEEd → ⎕SE.[SessionEditor]
· Utils
· · ~ Version lc uc
· · ∇ cut disp display dmb drvSrc dtb fromXML fromto lcase
psmum repObj showCol showRow toMatrix toVector toXML trimEnds
txtreplace ucase where
· · SALT_Data → ⎕SE.[Namespace]

5.14.8]NamesLike

This user command returns a list of all APL objects (irrespective of ⎕NC) that exist in the
current namespace (and, optionally, in the hierarchy beneath it) and match the specified
pattern.

EXAMPLES

To find all APL objects that contain the letter "a" in their name:
]NamesLike *a*

aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

To find all APL objects that contain the letter "a" in their namewithout showing their
nameclass:

]NamesLike *a* -noclass
aplUtils disableSALT enableSALT commandLineArgs
disableSPICE enableSPICE

5.14.9]Nms

This user command returns a list of all APL objects (irrespective of ⎕NC) that exist in the
current namespace (and, optionally, in the hierarchy beneath it) and match the specified
pattern.

revision20181005_230 65

User Commands User Guide

Almost identical to]NamesLike (see Section 5.14.8) but does not have a modifier for
removing the nameclass when displaying results. This slight restriction means that it
matches IBM's APL2 system command)NMS.

EXAMPLE

]Nms *a*
aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

5.14.10]ObsLike

This user command produces a list of APL objects for which ⎕NC is 9 (namespaces) that
exist in the current namespace (and, optionally, in the hierarchy beneath it) and match
the specified pattern.

EXAMPLES

To find all APL objects for which ⎕NC is 9:
]ObsLike

NStoScript aplUtilities test

To find all APL objects for which ⎕NC is 9 that contain the letter "e" in their name:
]ObsLike *e*

aplUtilities test

5.14.11]Peek

This user command executes the specified expression in a temporary copy of the
workspace; any changes made are discarded on termination of the user command,
meaning that the current workspace is unchanged.

This user command copies the specified workspace into a temporary namespace in the
current process and executes the specified expression in that namespace. It is used to
view, rather than to change, a saved workspace; any changes made in the copy are
discarded on termination of the command.

EXAMPLE

Execute the queens program from supplied workspace dfns.dws:
]Peek dfns 0 disp queens 5

revision20181005_230 66

User Commands User Guide

5.14.12]SizeOf

This user command produces a list of all APL objects that exist in the current namespace
and match the specified pattern along with their size (in bytes) in decreasing order.

EXAMPLE

)obs
NStoScript aplUtils test

)vars
CR DELINS Describe FS

]SizeOf -top=2 –class=2 9
NStoScript 132352 aplUtils 40964

5.14.13]VarsLike

This user command returns a list of APL objects for which ⎕NC is 2 (variables) that exist in
the current namespace (and, optionally, in the hierarchy beneath it) and match the
specified pattern.

EXAMPLES

To find all APL objects for which ⎕NC is 2:
]VarsLike

CR DELINS FS

To find all APL objects for which ⎕NC is 2 that contain the letter "s" in their name:
]VarsLike *S*

DELINS FS

revision20181005_230 67

User Commands User Guide

A SAMPLES Group

The SAMPLES group contains user commands that demonstrate the use ofmultiple levels
of help and parsing user command lines.

The user commands in this group are not like those in other groups; they do not provide
any useful functionality but their code can be examined to assist with understanding
when creating custom user commands. This can be achieved by opening them in any text
editor, for example, Microsoft Notepad.

This group is only available if]Settings cmddir ,[SALT]/study is issued.

A.1]UCMDHelp
An example of a custom user command that defines multiple levels of help information in
the Help function, selectable by the number of question marks supplied by the user, for
example,]<ucmd> -???.

To open the code for this user command in the Editor:
]ULoad UCMDHelp

Namespace #.HelpExample now contains source for]SAMPLES.UCMDHelp
from <full path>\SALT\study\aSampleHelp.dyalog

)ED HelpExample

A.2]UCMDNoParsing
An example of a custom user command that does not use parsing; the argument is the
entire string after the command name.

revision20181005_230 68

User Commands User Guide

To open the code for this user command in the Editor:
]ULoad UCMDNoParsing

Namespace #.anyname now contains source for]SAMPLES.UCMDNoParsing
from <full path>\SALT\study\aSample.dyalog

)ED anyname

A.3]UCMDParsing
An example of a custom user command that uses parsing; the string after the command
name is parsed and turned into a namespace containing the arguments (tokenised) and
each of the identified modifiers.

To open the code for this user command in the Editor:
]ULoad UCMDParsing

Namespace #.anyname now contains source for]SAMPLES.UCMDParsing
from <full path>\SALT\study\aSample.dyalog

)ED anyname

revision20181005_230 69

User Commands User Guide

B Example User Commands

This appendix includes examples illustrating the construction of user commands.

The examples in this appendix have been created to illustrate different aspects of
user commands. This means that they do not necessarily follow an efficient
workflow process or best coding practice.

B.1 Example: Basic User Command Definition
This example illustrates the definition of a basic user command.

A new user command called Time is required to display the local time. The necessary
functions are defined in a namespace called timefns:
:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨1⍴⊂'' ⍝ r is a vector of length 1 with the

⍝ item set to be a ref to a namespace
r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'
r[1].Desc←'Time example Script'

∇

∇ r←Run(Cmd Args)
r←1↓,'⊂:⊃,ZI2'⎕FMT ⎕TS[4 5 6] ⍝ show time

∇

∇ r←Help Cmd
r←'Time (no arguments)'

∇

:EndNamespace

revision20181005_230 70

User Commands User Guide

In this example:
l The List function sets the four variables Desc, Name, Group and Parse to 'Time
example Script', 'Time', 'TimeGrp' and '' respectively.

l The Run function only needs to call ⎕TS so the command name and any supplied
arguments are ignored. This function also formats the time into a user-friendly
format.

l The Help function identifies that there is only one user command in the
namespace (there is only one user command name, Time, defined) and returns
the appropriate information for that user command.

Running this user command in a Dyalog Session returns three numbers; these three
numbers are the current time, indicating the hour (according to the 24 hour clock), the
number ofminutes past the hour and the number of seconds elapsed respectively.

]Time -?
──
]TIMEGRP.Time

Time (no arguments)

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:05:09

(indicating that the current system time is 13:05 and 9 seconds)

B.2 Example: Cross-Operating System Definition
This example illustrates the inclusion of two different user commands within a single
namespace, different techniques for achieving the same result depending on the
operating system being used and using breakout without user commands.

Although the current system time returned by the Time user command (see Section B.1)
is useful, it might bemore relevant to have a choice of displaying local time or UTC
(Co-ordinated Universal Time). To do this, a new user command called UTC is required. As
this is closely related to the Time user command, it should be created in the same
namespace; this involves adding a new function called Zulu and modifying the Run, List
and Help functions.

revision20181005_230 71

User Commands User Guide

To illustrate the ability of a user command to obtain information through a
breakout call to .NET, this example also includes options in the Run function that
are dependent on the operating system that the Dyalog Session is being run on
(.NET is only valid when running on theMicrosoft Windows operating system).
These options ensure that the same user command is cross-system compatible for
Microsoft Windows and UNIX.

:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values
∇ r←List

r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
⍝ items set to be refs to namespaces

r.(Group Parse)←⊂'TimeGrp' ''
r.Name←'Time' 'UTC'
r.Desc←'Show local time' 'Show UTC time'

∇

∇ r←Run(Cmd Args);dt
:If 'Windows' ≡ 7↑⊃'.'⎕WG 'APLVERSION' ⍝ If Windows

⎕USING←'System'
dt←DateTime.Now

:If 'UTC'≡Cmd
dt←Zulu dt

:EndIf
r←(r⍳' ')↓r←⍕dt

:Else ⍝ If not Windows
dt←('UTC'≡Cmd)/'TZ=UTC' ⍝ set timezone
r←⊃⎕SH dt,' date +"%H:%M:%S"' ⍝ and get the time

:EndIf
∇

∇ r←Help Cmd;which
which←'Time' 'UTC'⍳⊂Cmd
r←which⊃'Time (no arguments)' 'UTC (no arguments)'

∇

∇ r←Zulu date
⍝ Use .NET to retrieve UTC info
r←TimeZone.CurrentTimeZone.ToUniversalTime date

∇

:EndNamespace

revision20181005_230 72

User Commands User Guide

In this example:
l The List function is amended to allow for two function definitions in the four

variable definitions:
o Desc is set to to 'Show local time' 'Show UTC time' (two values,

therefore the first applies to the first user command and the second applies
to the second user command)

o Name is set to 'Time' 'UTC' (two values, therefore the first applies to the
first user command and the second applies to the second user command)

o Group is set to ⊂TimeGrp (only one value so applied to both user
commands)

o Parse is set to '' (only one value so applied to both user commands)
l The Run function is amended to use the Cmd argument to determine which user

command is being run (any further supplied arguments are still ignored). The
operating system on which the Dyalog Session is being run is then identified;
different actions are taken depending on whether the operating system is
Microsoft Windows or UNIX (if neither, then a message is returned). The operating
system is then used to determine the current system time rather than the APL
system function ⎕TS, for example, if the UTC user command is being run on a
Microsoft Windows operating system, then the Run function calls the Zulu
function. The Run function also formats the resulting time into a more user-friendly
format irrespective of the operating system and user command.

l The Help function is amended to enable it to identify that there are two user
commands in the namespace (there are two user command names, Time and UTC,
defined) and return the appropriate information according to which name is
specified.

l The Zulu function is added to retrieve the UTC time through a .NET call – this
function is only called if the Run function identifies that the Dyalog Session is
running on a Microsoft Windows operating system and the]UTC user command is
specified.

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:
]TimeGrp -?

TIMEGRP:
Time Show local time in a city
UTC Show UTC time

]Time -?
──
]TIMEGRP.Time

revision20181005_230 73

User Commands User Guide

Time (no arguments)

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]UTC -?
──
]TIMEGRP.UTC

UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
12:18:15

(indicating that the co-ordinated universal time is 12:18 and 15 seconds)

B.3 Example: Optional Arguments
This example illustrates the creation of a user command with an optional argument.

Although the Time and UTC user commands return the local time and UTC respectively
(see Section B.2), they only work for the location in which the system is located. To return
the time in different locations, new functions could be defined for each location and the
Run, List and Help functions modified accordingly. Alternatively, the Run function can
bemodified to use the location as an argument to compute the time (this does not take
account of daylight saving time). Using this second approach the timefns.dyalog file can
bemodified as follows (example assumes theMicrosoft Windows operating system only):
:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the

⍝ items set to be refs to namespaces
r.(Group Parse)←⊂'TimeGrp' ''
r.Name←'Time' 'UTC'
r.Desc←'Show local time in a city' 'Show UTC time'

∇

∇ r←Run(Cmd Args);dt;offset;cities;diff;city;lcity;ix

revision20181005_230 74

User Commands User Guide

⎕USING←'System'
dt←DateTime.Now
:Select Cmd
:Case 'UTC'

dt←Zulu dt
:Case 'Time'

:If 0≠⍴city←Args~' '
offset←CityTimeOffset city
'Unknown city'⎕SIGNAL 11⍴⍨⍬≡offset
diff←⎕NEW TimeSpan(3↑offset)
dt←(Zulu dt)+diff

:EndIf
:EndSelect
r←(r⍳' ')↓r←⍕dt

∇

∇ r←Help Cmd;which
which←'Time' 'UTC'⍳⊂Cmd
r←which⊃'Time [city]' 'UTC (no arguments)'

∇

∇ r←Zulu date
⍝ Use .NET to retrieve UTC info
r←TimeZone.CurrentTimeZone.ToUniversalTime date

∇

∇ r←CityTimeOffset city;lcity;cities;ix;offsets
cities←'l.a.' 'montreal' 'copenhagen' 'sydney'
offsets←¯8 ¯5 1 10
r←⍬ ⍝ Assume no match
lcity←(819⌶)city ⍝ Name to lowercase
ix←cities⍳⊂lcity ⍝ Find city in cities
:If ix≤⍴cities ⍝ If present,

r←ix⌷offsets ⍝ return the offset
:EndIf ⍝ [else return ⍬]

∇

:EndNamespace

In this example:
l The List function has one small amendment to the description of the Desc

variable for the first user command.
l The Run function still uses the Cmd argument to determine which user command is

being run; different actions are taken according to which is specified. If the Cmd
argument is UTC then the function proceeds as before. However, if the Cmd
argument is Time then the function now takes the second argument into account

revision20181005_230 75

User Commands User Guide

and passes it to the CityTimeOffset function (the Args~' ' expression
removes any extraneous spaces in the name of the city, so that a user can enter
(for example) 'l.a.' or 'l. a.' and get a valid result) If the CityTimeOffset
function returns an offset value then the Run function uses this to calculate the
time in the specified city, otherwise it generates an "Unknown city" error message.

l The Help function has one small amendment to state that an optional argument
specifying the location can be included when running the Time user command.

l The Zulu function remains unchanged.
l The CityTimeOffset function is added to determine whether the second

argument matches the name of one of the cities that have had time offsets defined
and return the appropriate offset if a match is found. The name of the city entered
when running the user command is made case insensitive by converting them to
lower case with the (819⌶) expression.

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:
]Time -?

──
]TIMEGRP.Time

Time [city]

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]Time l.a.
04:17:51

(indicating that the current time in Los Angeles, ignoring daylight saving time, is 04:17 and
51 seconds)

]Time l.x.
* Command Execution Failed: Unknown city

(an invalid city was specified)

]UTC -?
──
]TIMEGRP.UTC

revision20181005_230 76

User Commands User Guide

UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
06:08:30

(indicating that the local co-ordinated universal time is 6:08 and 30 seconds)

]TimeGrp -?

TIMEGRP:
Time Show local time in a city
UTC Show UTC time

B.4 Example: The Parse Variable
This example illustrates use of the Parse variable; by setting this to non-empty values,
the user command framework is able to handle arguments and modifiers.

For more information on the Parse variable, see Section 4.2.3. For more
information on modifiers and modifier values, see Section 4.5. For more
information on arguments, see Section 4.6.

A new user command called Number is required to display either the age of the specified
person or to convert a decimal number into its Hexadecimal equivalent. The necessary
functions are defined in a namespace called number:
:Namespace number

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨1⍴⊂''
r.(Group Parse Name Desc)←⊂'AgeHex' '' 'Number' 'Gives age

or Hexadecimal format'
∇

∇ r←Run(Cmd Args);N;H;alph;Name;Names
r←⍬
Names←Args.Arguments
:For Name :In Names

:Select Name
:Case 'Fiona'

r,←40
:Case 'Andy'

revision20181005_230 77

User Commands User Guide

r,←51
:Else

:If ∧/Name∊⎕D ⍝ If all digits...
N←⌈16⍟(⍎Name)
H←(N⍴16)⊤(⍎Name)
alph←'0123456789ABCDEF'
r,←⊂alph[⎕IO+H]

:Else
r,←⊂'Unrecognised Name'

:EndIf
:EndSelect

:EndFor
∇

∇ r←Help Cmd
r←'Enter either a person''s name to return their age or a

number to return the Hexadecimal equivalent'
∇

:EndNamespace

In this example, the Parse variable is empty – this means that the Run function takes
everything following the command name as a simple character vector. However, if a valid
name is entered with the expectation of having that person's age returned, then an error
message is generated:

]Number Fiona
* Command Execution Failed: SYNTAX ERROR

The same error message is generated if a decimal number is entered with the expectation
of its Hexadecimal equivalent being returned:

]Number 42
* Command Execution Failed: SYNTAX ERROR

This error arises because the user command is expecting a namespace as its input and
instead it is receiving a simple character vector.

These errors arise because the Args parameter in the Run function is a simple character
vector rather than a namespace; this is due to the empty Parse variable. Populating the
Parse variable means that the Args parameter becomes a namespace.

For this example, the only changes that will bemade to the user command's code
are to its Parse variable definition.

revision20181005_230 78

User Commands User Guide

To enable the user command to perform the necessary namespace conversion, the
Parse variable is changed from '' to '2S' – this means that the user command can
accept 0, 1 or 2 arguments but no more (for more information on this, see Section 4.6.4).

]Number 42
2A

]Number 42 42
2A 2A

]Number 42 42 42
* Command Execution Failed: too many arguments

]Number 42 Fiona
2A 40

Changing the Parse variable again, this time from '2S' to '2L', means that 2
arguments must be supplied; if more than this are supplied then the first argument is
taken as specified and the rest aremerged together to become the second argument (for
more information on this, see Section 4.6.5).

]Number 42
* Command Execution Failed: too few arguments

]Number 42 42
2A 2A

]Number 42 42 42
2A Unrecognised Name

]Number 42 Fiona
2A 40

B.5 Example: Debugging a User Command
This example illustrates using the]UDebug user command to debug a namespace
containing a user command group definition.

Three keyboard shortcuts for command codes are referred to in this example – <TC>
(Trace), <ED> (Edit) and <EP> (Escape). The usual key combinations for these are
operating-system-dependent.

Relevant key combinations on theMicrosoft Windows operating system:
l <TC> is usually Ctrl + Enter
l <ED> is usually Shift + Enter
l <EP> is usually Escape

revision20181005_230 79

User Commands User Guide

Relevant key combinations on the UNIX operating system:
l <TC> is usually APLKey +Shift + Enter
l <ED> is usually APLKey + Enter
l <EP> is usually Escape

Relevant key combinations on themacOS operating system:
l <TC> is usually Ctrl + Enter
l <ED> is usually Shift + Enter
l <EP> is usually Escape

A user command can be debugged by tracing through ⎕SE.UCMD (see Section 3.3).
However, a more convenient method is to instruct the framework to suspend on the first
line of the Run or Help function – tracing/debugging can then proceed from there. To do
this, debugging modemust be switched on:

]UDebug on
Was OFF

If an error is encountered in debugging mode, execution of the user command is
suspended rather than returning to the calling function.

When debugging is enabled, specifying a space followed by the – character at the end of
the command opens the Tracewindowwith the code suspended on Run[1]. For
example, using the number namespace defined in Section B.4 to hold the AgeHex group
of user commands:

]Number 42 Andy
2A 51

]Number 42 Andy –
Run[1]

To progress through the Run function, enter the Trace command (<TC>).

You can now trace and debug the code in the namespace.

The Tracewindow shows that, in the number namespace, the Parse variable is set to 2S.
This means that the Args variable is a namespace. The namespace contains a number of
variables, one of which is Arguments:

]Disp Args
⎕SE.[Namespace]

Args.⎕NL 2
Arguments

revision20181005_230 80

User Commands User Guide

SwD
_1
_2

]Disp Args.Arguments
┌→─┬────┐
│42│Andy│
└─→┴───→┘

This shows that the Arguments variable is a vector comprising two character vectors.

Enter the Edit command (<ED>) to open the namespace definition in the Editwindow and
change the Parse variable from '2S' to '2L'. Save the changes and repeatedly enter
the Escape command (<EP>) until you are no longer tracing through code. Then enter:

]Number 42 Andy 8 9 10 –

With the Run function suspended, enter:
]Disp Args.Arguments

┌→─┬───────────┐
│42│Andy 8 9 10│
└─→┴──────────→┘

This shows that the Arguments variable is still a vector comprising two character vectors.
However, the second of the two character vectors now includes everything after the first
argument in the call to the user command.

Press the <ED> key combination to open the namespace definition in the Editwindow
and change the Parse variable from '2L' to '2S -true'. The '-true'means that the
parser now accepts a modifier called -true that does not accept a modifier value but can
only be present or absent (see Section 3.7.2). Save the changes and repeatedly hit <EP>
until you are no longer tracing through code. Then enter:

]Number 42 Andy –
Args.⎕NL 2

Arguments
SwD
_1
_2
true

This shows an additional variable, true, created with the same name as themodifier that
was included in the Parse variable. However, when calling the]Number user command,
this on/offmodifier was not specified. Therefore:

Args.true
0

revision20181005_230 81

User Commands User Guide

To see the effect of calling the]Number user command with this modifier specified:
)reset
]Number 42 Andy -true –
Args.true

1

Debugging mode is switched off using:
]UDebug off

Was ON

revision20181005_230 82

User Commands User Guide

Index

A
Arguments 10, 20
Default values 20
Including space characters 20
Long 21
Maximum number of 21
Minimum number of 20
Specification in the parser 21

B
Basic Definition 12

C
Cache file 3
Creating custom user commands 12
Argument definition 20
Basic Definition 12
Detecting new user commands 23
Help function 15
List function 13
Modifier definition
Default values 18

Run function 15
Saving custom user commands 22

D
Detecting new user commands 23
Directory structure 6

F
File format 8
Flags See Modifiers

G
Groups 8

H
Help function 15
Defining multiple levels of help 16

I
Implementation 6
Installation 6

L
List function 13
Group variable 14
Name variable 13
Parse variable 14

M
Modifiers 18
Default values 18
Syntax 10

P
Parse variable 14

R
Run function 15
Running user commands 10

S
Saving custom user commands 22
Switch function 19
Switches See Modifiers

revision20181005_230 83

User Commands User Guide

Syntax 9

U
User command groups (predefined) 24
ARRAY 25
CALC 26
DEVOPS 28
FILE 28
FN 32
MSWIN 36
NS 40
OUTPUT 43
PERFORMANCE 47
SALT 49
SAMPLES 68
TOOLS 54
TRANSFER 57
UCMD 57
WS 61

User commands (predefined)
]ADoc 54
]Align 32
]Assemblies 36
]Box 43
]Boxing 43
]Calendar 55
]Calls 33
]Caption 36
]CD 29
]Chart 55
]Check 61
]Clean 50
]Collect 29
]Compare
]ARRAY.Compare 25
]FILE.Compare 29
]FN.Compare 34
]SALT.Compare 50
]WS.Compare 61

]CopyReg 37
]DBuild 28
]Defs 34

]Demo 56
]DInput 34
]Disp 44
]Display 44
]Document 61
]DTest 28
]Edit
]ARRAY.Edit 26
]FILE.Edit 30

]Factors 26
]FileAssociations 38
]Find
]FILE.Find 30
]OUTPUT.Find 45

]FindRefs 62
]FnsLike 64
]Format 45
]FromHex 27
]GUIProps 39
]Help 56
]In 57
]KeyPress 39
]Latest 35
]Layout 46
]Link 28
]List 50
]Load 51
]Locate 64
]Map 64
]Nms 65
]ObsLike 66
]Open 30
]Out 57
]Peek 66
]PivotTable 27
]Profile 47
]Refresh 51
]RemoveVersions 52
]ReorderLocals 35
]Replace 31
]Rows 47
]RunTime 48

revision20181005_230 84

User Commands User Guide

]Save 52
]ScriptUpdate 41
]Set 52
]Settings 53
]SizeOf 67
]Snap 54
]SpaceNeeded 49
]Split 31
]Summary 41
]ToHex 28
]ToLarge 31
]ToQuadTS 32
]Touch 32
]UCMDHelp 68
]UCMDNoParsing 68
]UCMDParsing 69
]UDebug 57
]ULoad 57
]UMonitor 58
]UNew 59
]UReset 59
]USetup 60
]UVersion 60
]VarsLike 67
]Version 56
]Xref 42

revision20181005_230 85

User Commands User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Cache File
	2.1.1 Defining the UCMDCACHEFILE Environment Variable

	3 Using User Commands
	3.1 Installation
	3.2 Directory Structure
	3.3 Implementation
	3.3.1 Customising the Implementation

	3.4 File Format
	3.5 Groups
	3.6 Syntax in Dyalog Sessions
	3.6.1 Requesting Additional Information

	3.7 Running User Commands
	3.7.1 Arguments
	3.7.2 Modifiers and Modifier Values

	4 Creating User Commands
	4.1 Basic Definition
	4.2 The List Function
	4.2.1 Name
	4.2.2 Group
	4.2.3 Parse

	4.3 The Run Function
	4.4 The Help Function
	4.4.1 Defining Multiple Levels of Help

	4.5 Modifiers
	4.5.1 Default Modifier Values

	4.6 Arguments
	4.6.1 Default Argument Values
	4.6.2 Arguments Including Space Characters
	4.6.3 Minimum Number of Arguments
	4.6.4 Maximum Number of Arguments
	4.6.5 Long Arguments
	4.6.6 Summary of Argument Specification in the Parser

	4.7 Saving Custom User Commands
	4.8 Detecting New Custom User Commands

	5 Predefined User Commands
	5.1 ARRAY Group
	5.1.1]Compare
	5.1.2]Edit

	5.2 CALC Group
	5.2.1]Factors
	5.2.2]FromHex
	5.2.3]PivotTable
	5.2.4]ToHex

	5.3 DEVOPS Group
	5.3.1]DBuild
	5.3.2]DTest
	5.3.3]Link

	5.4 FILE Group
	5.4.1]CD
	5.4.2]Collect
	5.4.3]Compare
	5.4.4]Edit
	5.4.5]Find
	5.4.6]Open
	5.4.7]Replace
	5.4.8]Split
	5.4.9]ToLarge
	5.4.10]ToQuadTS
	5.4.11]Touch

	5.5 FN Group
	5.5.1]Align
	5.5.2]Calls
	5.5.3]Compare
	5.5.4]Defs
	5.5.5]DInput
	5.5.6]Latest
	5.5.7]ReorderLocals

	5.6 MSWIN Group
	5.6.1]Assemblies
	5.6.2]Caption
	5.6.3]CopyReg
	5.6.4]FileAssociations
	5.6.5]GUIProps
	5.6.6]KeyPress

	5.7 NS Group
	5.7.1]ScriptUpdate
	5.7.2]Summary
	5.7.3]Xref

	5.8 OUTPUT Group
	5.8.1]Box
	5.8.2]Boxing
	5.8.3]Disp
	5.8.4]Display
	5.8.5]Find
	5.8.6]Format
	5.8.7]Layout
	5.8.8]Rows

	5.9 PERFORMANCE Group
	5.9.1]Profile
	5.9.2]RunTime
	5.9.3]SpaceNeeded

	5.10 SALT Group
	5.10.1]Clean
	5.10.2]Compare
	5.10.3]List
	5.10.4]Load
	5.10.5]Refresh
	5.10.6]RemoveVersions
	5.10.7]Save
	5.10.8]Set
	5.10.9]Settings
	5.10.10]Snap

	5.11 TOOLS Group
	5.11.1]ADoc
	5.11.2]Calendar
	5.11.3]Chart
	5.11.4]Demo
	5.11.5]Help
	5.11.6]Version

	5.12 TRANSFER Group
	5.12.1]In
	5.12.2]Out

	5.13 UCMD Group
	5.13.1]UDebug
	5.13.2]ULoad
	5.13.3]UMonitor
	5.13.4]UNew
	5.13.5]UReset
	5.13.6]USetup
	5.13.7]UVersion

	5.14 WS Group
	5.14.1]Check
	5.14.2]Compare
	5.14.3]Document
	5.14.4]FindRefs
	5.14.5]FnsLike
	5.14.6]Locate
	5.14.7]Map
	5.14.8]NamesLike
	5.14.9]Nms
	5.14.10]ObsLike
	5.14.11]Peek
	5.14.12]SizeOf
	5.14.13]VarsLike

	A SAMPLES Group
	A.1]UCMDHelp
	A.2]UCMDNoParsing
	A.3]UCMDParsing

	B Example User Commands
	B.1 Example: Basic User Command Definition
	B.2 Example: Cross-Operating System Definition
	B.3 Example: Optional Arguments
	B.4 Example: The Parse Variable
	B.5 Example: Debugging a User Command

	Index

